(căn 5 + căn 3 ). căn(8-2căn5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow D^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}\)
\(=8+2\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow D=\sqrt{5}+1\)
Bài 1 :
\(A=\sqrt{4-2\sqrt{3}}+\sqrt{27}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{27}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+3\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|+3\sqrt{3}\)
\(=\sqrt{3}-1+3\sqrt{3}\)
\(=4\sqrt{3}-1\)
\(B=\sqrt{14-6\sqrt{5}}+\sqrt{125}\)
\(=\sqrt{9-6\sqrt{5}+5}+\sqrt{125}\)
\(=\sqrt{\left(3-\sqrt{5}\right)}^2+5\sqrt{5}\)
\(=\left|3-\sqrt{5}\right|+5\sqrt{5}\)
\(=3-\sqrt{5}+5\sqrt{5}\)
\(=3+4\sqrt{5}\)
6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)
7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)
8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)
9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)
\(B=50-3\sqrt{98}+2\sqrt{8}+3\sqrt{32}-5\sqrt{18}\)
\(=50-3.\sqrt{7^2.2}+2\sqrt{2^2.2}+3\sqrt{4^2.2}-5\sqrt{3^2.2}\)
\(=50-3.7\sqrt{2}+2.2\sqrt{2}+3.4\sqrt{2}-5.3\sqrt{2}\)
\(=50-21\sqrt{2}+4\sqrt{2}+12\sqrt{2}-15\sqrt{2}\)
\(=50+\sqrt{2}.\left(-21+4+12-15\right)\)
\(=50+\sqrt{2}.\left(-20\right)\)
\(=50-20\sqrt{2}\)
\(C=\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)\left(\sqrt{3}+\sqrt{5}-\sqrt{7}\right)\)
\(=\left(\sqrt{3}+\sqrt{5}\right)^2-\sqrt{7}^2\)
\(=\sqrt{3}^2+2.\sqrt{3}.\sqrt{5}+\sqrt{5}^2-7\)
\(=2\sqrt{15}+3+5-7\)
\(=2\sqrt{15}+1\)
Nghĩ ra xong tính thử thấy đúng định nàm xong thấy mẹ giải r ấy:")). Với nại con còn nhỏ nắm, hong bic nhiều cái mà nớp 9 hay sử dụng nữa ý, sợ dùng sai;-;.
a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)
b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
c: \(=2\sqrt{21}\)
(√10−√15+3√3)√5−√72(10−15+33)5−72
=√15−√15+15−6√2=15−15+15−62
\(=\)15−6√2
(15√50+5√200−3√450)8√10(1550+5200−3450)810
=(15.5√2+5.10√2−3.15√2)8√10=(15.52+5.102−3.152)810
=
a, (\(\sqrt{128}\)-\(\sqrt{50}\)+\(\sqrt{98}\)):\(\sqrt{2}\)
=(8-5+3)
=10
b, (\(\sqrt{48}\)+\(\sqrt{27}\)-\(\sqrt{192}\)):2\(\sqrt{3}\)
=(2+1,5-4)
=-0,5
c, \(\dfrac{1}{8}\)-3\(\sqrt{2}\) +\(\dfrac{1}{8}\)+3\(\sqrt{2}\)
=\(\dfrac{1}{4}\)
d, \(\sqrt{\left(1-\sqrt{5}\right)^2}-\sqrt{5}\)
=-1