Tìm x,y thuộc Z thỏa:
3x2 + 5y2=345
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\frac{47}{15}(3x^2+5y^2)=[(\sqrt{3}x)^2+(-\sqrt{5}y)^2][(\frac{2}{\sqrt{3}})^2+(\frac{3}{\sqrt{5}})^2]\geq (2x-3y)^2$
$\Leftrightarrow \frac{47}{15}(3x^2+5y^2)\geq 49$
$\Rightarrow 3x^2+5y^2\geq \frac{735}{47}$
Ta có đpcm.
Answer:
\(2+5y^2=6\)
\(5y^2=6-2\)
\(5y^2=4\)
\(5y^2=2^2\)
\(\Rightarrow5y=2\)
\(y=2\div5\)
\(y=\dfrac{2}{5}\)
Vậy \(y=\dfrac{2}{5}\)
`(x - 1)^2 + 5y^2 = 6`
`<=>` $\left[\begin{matrix} (x - 1)^2 = 0\\ (x - 1)^2 = 2\end{matrix}\right.$
`<=>` $\left[\begin{matrix} y = -1; 1\\ y = -1; 1\end{matrix}\right.$\
`<=>` $\left[\begin{matrix} x = 0 ; y = -1; 1\\ x = 2 ; y = -1; 1\end{matrix}\right.$
=>x^2+4xy+4y^2+y^2-2y<0
=>y^2-2y<0
=>0<y<2
=>y=1 và \(x\in Z\)
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)
\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)
\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)
Vì x,y nguyên nên ta có các trường hợp sau:
TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)
Các TH còn lại bạn tự làm nhé
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)
\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)
\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)
-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)
3x2+5y2=345
=> 3x2+5y2=300+45
=> 3x2+5y2=3.100+5.9
=> 3x2+5y2=3.102+5.32
=> x=10; y=3.
x =-10 ; y = -3
Hoặc x = 10 ; y = 3