K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

\(3.\left|x-1\right|-6=9\)

\(\Rightarrow3.\left|x-1\right|=9+6\)

\(\Rightarrow3.\left|x-1\right|=15\)

\(\Rightarrow\left|x-1\right|=15:3\)

\(\Rightarrow\left|x-1\right|=5\)

Ta sẽ có 2 trường hợp :

TH1 : \(x-1=5\)

          \(\Rightarrow x=5+1\)

          \(\Rightarrow x=6\)

TH2 : \(x-1=-5\)

          \(\Rightarrow x=-5+1\)

          \(\Rightarrow x=-4\)

18 tháng 12 2019

3/x-1/-6=9

3/x-1/=9+6

3/x-1/=15

/x-1/=5

+ x-1=(-5)=>x=-4

+x-1=5=>x=6

vậy x=-4:x=6

3 tháng 4 2022

X + 5/9 = 4/3   

X = 4/3 - 5/9

X = 7/9 

            

X - 4/9 = 1/2       

X = 1/2 + 4/9

X =  17/18 

  

6/13 + X = 7/6 

X = 7/6 - 6/13

X = 55/78

            

13/5 - X = 5/6   
X = 13/5 - 5/6

X= 53/30

3 tháng 4 2022

X + 5/9 = 4/3 

x           = 4/3 - 5/9

x           =   7/9

  X - 4/9 = 1/2   

  x          = 1/2 + 4/9 

  x          =   17/18        

6/13 + X = 7/6     

            x = 7/6 - 6/13 

            x -  55/78

13/5 - X = 5/6 

          x  = 13/5 - 5/6

          x  =   53/30   

1: Để 2/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{2}{x}>0\\x\inƯ\left(2\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2\right\}\)

2: Để 3/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{3}{x}>0\\x\inƯ\left(3\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;3\right\}\)

3: Để 4/x là số tự nhiên là \(\left\{{}\begin{matrix}\dfrac{4}{x}>0\\x\inƯ\left(4\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;4\right\}\)

4: Để 5/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{5}{x}>0\\x\inƯ\left(5\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;5\right\}\)

5: Để 6/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{6}{x}>0\\x\inƯ\left(6\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;3;6\right\}\)

6: Để 9/x+1 là số tự nhiên thì \(\left\{{}\begin{matrix}x+1>0\\x+1\inƯ\left(9\right)\end{matrix}\right.\Leftrightarrow x+1\in\left\{1;3;9\right\}\)

=>\(x\in\left\{0;2;8\right\}\)

7: Để 8/x+1 là số tự nhiên thì

\(\left\{{}\begin{matrix}x+1\inƯ\left(8\right)\\x+1>0\end{matrix}\right.\)

=>x+1 thuộc {1;2;4;8}

=>x thuộc {0;1;3;7}

8: Để 7/x+1 là số tự nhiên thì

x+1>0 và x+1 thuộc Ư(7)

=>x+1 thuộc {1;7}

=>x thuộc {0;6}

9: Để 6/x+1 là số tự nhiên thì

x+1>0 và x+1 thuộc Ư(6)

=>x+1 thuộc {1;2;3;6}

=>x thuộc {0;1;2;5}

10: Để 5/x+1 là số tự nhiên thì

x+1>0 và x+1 thuộc Ư(5)

=>x+1 thuộc {1;5}

=>x thuộc {0;4}

14 tháng 9 2021

1) \(\dfrac{3x}{4x-8}\)

\(ĐKXĐ:4x-8\ne0\Leftrightarrow x\ne2\)

2) \(\dfrac{2x}{x^2-9}\)

\(ĐKXĐ:x^2-9\ne0\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

3) \(\dfrac{6}{x^3+1}=\dfrac{6}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(ĐKXĐ:\)\(x+1\ne0\Leftrightarrow x\ne-1\)

(do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))

4) \(\dfrac{6x^2}{x^2-2x+1}=\dfrac{6x^2}{\left(x-1\right)^2}\)

\(ĐKXĐ:x-1\ne0\Leftrightarrow x\ne1\)

5) \(\dfrac{x-2}{x^2+3}\)

Do \(x^2+3>0\forall x\in R\)

Vậy biểu thức trên xác định với mọi x

6) \(\dfrac{2x}{x^2+3x+2}=\dfrac{2x}{\left(x+1\right)\left(x+2\right)}\)

\(ĐKXĐ:\)\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\end{matrix}\right.\)

31 tháng 10 2021

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

31 tháng 10 2021

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+1+3x^2=-33\)

\(\Leftrightarrow39x=-34\)

hay \(x=-\dfrac{34}{39}\)

b: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7

c: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3+8-x^3+9x=26\)

\(\Leftrightarrow x=2\)

10 tháng 3 2019

Lỗi sai: Khi chuyển vế hạng tử -x từ vế phải sang vế trái và hạng tử -6 từ vế trái sang vế phải không đổi dấu của hạng tử đó.

Sửa lại:

3x – 6 + x = 9 – x

⇔ 3x + x + x = 9 + 6

⇔ 5x = 15

⇔ x = 3.

Vậy phương trình có nghiệm duy nhất x = 3.

5 tháng 5 2022

a) x=8/9 - 1/6
    x= 13/18
b) x=7/10+1/6
   x= 13/15
c)  5/2-x=3/4
   -x=3/4 - 5/2
-x=-7/4
  x=7/4

5 tháng 5 2022

like và theo dõi mik đuy

28 tháng 6 2017

ta có 

     (x-3)- (x-3)(x2+3x+9) + 6(x+1) = 15

    (x-3)3 - ( x-3 )3         6(x+1)        =15

                           6(x+1)               =15

                         x+1                   =2,5

                        x                       =1,5