K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(2x^2-6x+15\)

\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{21}{2}\)

\(=2\left(x-\frac{3}{2}\right)^2+\frac{21}{2}>0\)

Nhi Lô kcj đâu bạn tick mình đúng nha !

25 tháng 3 2023

ai giúp tui vs 

 

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

BPT thì làm sao gọi là luôn dương hả bạn? Đề phải là CMR các BPT sau luôn đúng với mọi $x$.

1. 

Ta có: $2x^2-2x+17=x^2+(x^2-2x+1)+16=x^2+(x-1)^2+16\geq 16>0$ với mọi $x\in\mathbb{R}$

Do đó BPT luôn đúng với mọi $x$

2.

$-x^2+6x-18=-(x^2-6x+18)=-[(x^2-6x+9)+9]=-[(x-3)^2+9]$

$=-9-(x-3)^2\leq -9<0$ với mọi $x\in\mathbb{R}$

Vậy BPT luôn đúng với mọi $x$

3.

$|x-1|+|x|+2\geq 0+0+2=2>1$ với mọi $x\in\mathbb{R}$

Do đó BPT luôn đúng với mọi $x$

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)

b: \(4y^2+2y+1\)

\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)

\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)

\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)

c: \(-2x^2+6x-10\)

\(=-2\left(x^2-3x+5\right)\)

\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)

\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)

`#3107.101107`

a)

`x^2 + x + 1`

`= (x^2 + 2*x*1/2 + 1/4) + 3/4`

`= (x + 1/2)^2 + 3/4`

Vì `(x + 1/2)^2 \ge 0` `AA` `x`

`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`

Vậy, `x^2 + x + 1 > 0` `AA` `x`

b)

`4y^2 + 2y + 1`

`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`

`= (2y + 1/2)^2 + 3/4`

Vì `(2y + 1/2)^2 \ge 0` `AA` `y`

`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`

Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`

c)

`-2x^2 + 6x - 10`

`= -(2x^2 - 6x + 10)`

`= -2(x^2 - 3x + 5)`

`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`

`= -2[ (x - 3/2)^2 + 11/4]`

`= -2(x - 3/2)^2 - 11/2`

Vì `-2(x - 3/2)^2 \le 0` `AA` `x`

`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`

Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`

13 tháng 9 2018

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

13 tháng 9 2018

2 câu cuối ko rõ đề

18 tháng 12 2021

\(2x^2+4y^2+4xy-6x+100=\left(x^2+4xy+4y^2\right)+\left(x^2-6x+9\right)+91=\left(x+2y\right)^2+\left(x-3\right)^2+91\ge91>0\)

22 tháng 7 2020

a.4x^2-12x+15 = 0; vô nghiệm vì vế trái = 4x^2-12x+15=(2x)^2-2.3.(2x)+3^2+6=(2x-3)^2+6>=6 nên vế trái>0

22 tháng 7 2020

b) Ta có 6x - x2 - 10 

= -x2 - 3x - 3x - 10

= -x(x + 3) - 3x - 9 - 1

= -x(x + 3) - 3(x + 3) - 1

= -(x + 3)(x + 3) - 1

= -(x + 3)2 - 1 = -[(x + 3)2 + 1]

Ta có \(\left(x+3\right)^2+1\ge\forall x\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1< 0\)

=> 6x - x2 - 10 < 0 \(\forall\)x

10 tháng 12 2021

\(Sửa:\left(2x^4-7x^3-7x^2-6x-2\right):\left(2x^2+x-1\right)\\ =\left(2x^4+x^3-x^2-8x^3-4x^2+4x-2x^2-x+1-9x-3\right):\left(2x^2+x-1\right)\\ =\left[x^2\left(2x^2+x-1\right)-4x\left(2x^2+x-1\right)-\left(2x^2+x-1\right)-9x-3\right]:\left(2x^2+x-1\right)\\ =x^2-4x-1\left(\text{dư }-9x-3\right)\)

2 tháng 6 2019

chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^

\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)

đến đây Vi-ét đc òi

2 tháng 6 2019

Gotcha Tokoyami

Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)

          \(=m^2-4m+4+4m^2-12m+16\)

          \(=5m^2-16m+20\)

           \(=5\left(m^2-\frac{16}{5}m+4\right)\)

            \(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)

            \(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)

Nên pt có 2 nghiệm phân biệt với mọi m 

a, Với m = 0 thì pt trở thành

\(x^2+2x-4=0\)

Có \(\Delta'=1+4=5>0\)

\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)

b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)

nên pt có 2 nghiệm trái dấu

c,  Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới

17 tháng 7 2019

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)

(đpcm)

17 tháng 7 2019

nhầm câu b tí: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

(đpcm) (sửa dấu + thành - thôi:v)