K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

Ta có : \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-mx\\4x+m\left(3-mx\right)=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-mx\\4x+3m-m^2x=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-mx\\x=\frac{6-3m}{4-m^2}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-\frac{3m}{m+2}=\frac{3m+6-3m}{m+2}=\frac{6}{m+2}\\x=\frac{6-3m}{4-m^2}=\frac{3m-6}{m^2-4}=\frac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\frac{3}{m+2}\end{matrix}\right.\)

- Ta có : \(\left\{{}\begin{matrix}x>2\\y>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{3}{m+2}>2\\\frac{6}{m+2}>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{3}{m+2}-2=\frac{3-2m-4}{m+2}>0\\\frac{6}{m+2}>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3-2m-4>0\\m+2>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2m+1< 0\\m+2>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m< -\frac{1}{2}\\m>-2\end{matrix}\right.\)

=> \(-2< m< -\frac{1}{2}\)

Vậy ....

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

28 tháng 5 2021

\(mx+2y=-1\)

\(\text{Với : }\)\(\left(x,y\right)=\left(3,2\right)\)

\(3m+2\cdot2=-1\)

\(\Leftrightarrow m=\dfrac{-5}{3}\)

28 tháng 5 2021

`(x;y)=(3;2)` là nghiệm của hệ (I) `<=> m.3+2.2=-1 <=> m=-5/3`

x-y=4+2m và 4x+y=3m-4

=>5x=5m và x-y=2m+4

=>x=m và y=m-2m-4=-m-4

xy=-5

=>m(-m-4)=-5

=>m^2+4m=5

=>m^2+4m-5=0

=>(m+5)(m-1)=0

=>m=1 hoặc m=-5

17 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\) 

TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0

TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\) 

\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\) 

\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)

\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )

TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\) 

Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\) 

\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\) 

Gộp cả 2 điều kiện x và y ta được m=-1 và m=0 

Nãy giờ gõ nó cứ bị lỗi :D 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

20 tháng 3 2022

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m\left(mx-2\right)=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m^2x-2m=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+1\right)=3+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m.\dfrac{3+2m}{m^2+1}-2\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m+2m^2-2m^2-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(x+y=0\\ \Leftrightarrow\dfrac{3m-2}{m^2+1}+\dfrac{3+2m}{m^2+1}=0\\ \Leftrightarrow\dfrac{3m-2+3+2m}{m^2+1}=0\\ \Rightarrow4m+1=0\\ \Leftrightarrow m=-\dfrac{1}{4}\)

 

20 tháng 3 2022

x+y=0 \(\Rightarrow\) y=-x.

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}mx+x=2\\x-mx=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x\left(m+1\right)=2\\x\left(1-m\right)=3\end{matrix}\right.\) \(\Rightarrow\) \(\dfrac{2}{m+1}=\dfrac{3}{1-m}\) \(\Rightarrow\) m=-1/5 (nhận).

20 tháng 1 2021

Hệ đẫ cho có nghiệm duy nhất khi \(m\ne-1\)

20 tháng 1 2021

\(\left\{{}\begin{matrix}x-y=1\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m\left(1+y\right)+y=m\end{matrix}\right.\)  \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m+my+y=m\end{matrix}\right.\)   \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y\left(m+1\right)=0\end{matrix}\right.\) (*)

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\) m + 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) -1

Khi đó: (*) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y=\dfrac{0}{m+1}=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+0=1\\y=0\end{matrix}\right.\)

Vậy m \(\ne\) -1 thì hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Chúc bn học tốt!

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên