có tồn tại hay ko 3 số nguyên x,y,z thoả mãn điều kiện
\(x^3+y^3+z^3=x+y+z+2020\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)
\(=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Lời giải:
$x+y+z=2014; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2014}$
$\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$
$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$
$\Rightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$
$\Rightarrow (x+y)[\frac{1}{xy}+\frac{1}{z(x+y+z)}]=0$
$\Rightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$
$\Rightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$
$\Rightarrow (x+y)(z+x)(z+y)=0$
$\Rightarrow x+y=0$ hoặc $x+z=0$ hoặc $z+y=0$
$\Rightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$
Vậy trong 3 số $x,y,z$ tồn tại hai số đối nhau.
Lời giải:
$x^3+y^3+z^3=x+y+z+2020$
$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$
$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$
Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$
$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$
Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.