cho a,b,c,d là số nguyên dương biết
a2+d2 =c2 +b2
CM a+b+c+d là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(a^2+d^2-c^2-b^2=\left(a+d\right)^2-2ad-\left(b+c\right)^2+2bc=0\)
\(\left(a+b+c+d\right)\left(a+d-b-c\right)=2\left(ad-bc\right)\)
a+b+c+d+(a+d-b-c)=2(a+d) chẵn
suy ra a+b+c+d và a+d-b-c cùng chẵn hoặc cùng lẻ
\(a+b+c+d\ge4\)vì \(a\ge1\);\(b\ge1\);\(c\ge1\);\(d\ge1\)
a+b+c+d lại chia hết cho 2 nên a+b+c+d là hợp số
nếu cùng lẻ thì lại ko có số nào chia hết cho 2 nên ad-bc=0 và a+d-b-c=0( phương pháp đồng nhất hệ số)
ad=bc suy ra
a+d=b+c
suy ra a+d+b+c=a+d+(b+c)=a+d+a+d=2(a+d) chia hết cho 2
Vậy a+b+c+d luôn là hợp số
P/S: chả biết đúng không nữa