K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Xét tứ giác ACED có

AD//CE

AD=CE

Do đó: ACED là hình bình hành

b: Xét ΔIBA vuông tại B và ΔICK vuông tại C có

IB=IC

góc AIB=góc CIK

Do đo: ΔIBA=ΔICK

=>AB=CK

=>CK=CD

=>C là trung điểm của KD

Xét tứ giác DBKE có

DK cắt BE tại trung điểm của mỗi đường

DK vuông góc với BE

Do đó:DBKE là hình thoi

a: Xét tứ giác ACED có

AD//CE

AD=CE

Do đó: ACED là hình bình hành

b: Xét ΔIBA vuông tại B và ΔICK vuông tại C có

IB=IC

góc AIB=góc CIK

Do đo: ΔIBA=ΔICK

=>AB=CK

=>CK=CD

=>C là trung điểm của KD

Xét tứ giác DBKE có

DK cắt BE tại trung điểm của mỗi đường

DK vuông góc với BE

Do đó:DBKE là hình thoi

28 tháng 12 2020

a) Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Vì D đối xứng với M qua AB(gt)

nên AB là đường trung trực của DM

⇔AB vuông góc với DM tại trung điểm của DM

mà AB cắt DM tại H(gt)

nên H là trung điểm của DM và MH⊥AB tại H

Ta có: MH⊥AB(cmt)

AC⊥AB(ΔABC vuông tại A)

Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)

hay MD//AC

Ta có: H là trung điểm của MD(cmt)

nên \(MH=\dfrac{1}{2}\cdot MD\)(1)

Xét ΔABC có 

M là trung điểm của BC(gt)

MH//AC(cmt)

Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

H là trung điểm của AB(cmt)

Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra AC=MD

Xét tứ giác ACMD có 

AC//MD(cmt)

AC=MD(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0

a: Xét tứ giác ADCE có 

N là trung điểm của AC

N là trung điểm của DE

Do đó: ADCE là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b: Xét tứ giác ABDE có 

AE//BD

AE=BD

Do đó: ABDE là hình bình hành

a: Xét tứ giác BADC có

M là trung điểm chung của BD và AC

=>BADC là hình bình hành

Hình bình hành BADC có \(\widehat{ABC}=90^0\)

nên BADC là hình chữ nhật

b: Ta có: BADC là hình chữ nhật

=>BA//DC và BA=DC

Ta có: BA//DC

A\(\in\)BE

Do đó: AE//DC

Ta có:BA=DC

AE=AB

Do đó: AE=CD

Xét tứ giác AEDC có

AE//CD

AE=CD

Do đó: AEDC là hình bình hành

c: Ta có: E đối xứng B qua A

=>A là trung điểm của BE

Xét ΔDBE có

DA,EM là đường trung tuyến

DA cắt EM tại K

Do đó: K là trọng tâm của ΔDBE

Xét ΔDBE có 

K là trọng tâm của ΔDBE

DA là đường trung tuyến

Do đó: \(DA=3AK\)

mà DA=BC(ABCD là hình chữ nhật)

nên BC=3AK