Cho xy(x+y) + yz(y+z) + zx(z+x) +2xyz = 0
Cmr: x2019 + y2019 + z2019 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
do x+y+z=1 và x+y+z>=0
=>x,y,z =<1
Ta có xy+yz+zx -2xyz >=xyz+xyz+xyz -2xyz =xyz >=0
dấu = xảy ra <=> 2 trong 3 số =0
*ta có x+y+z >=3 căn bậc 3(xyz) BĐT cô-si
=>xyz<=((x+y+z)^3)/27
=>-2xyz>=-2/27 (1)
Lại có xy+yz+zx <=1/3(x^2+y^2+z^2)=1/3 (2)
Từ (1) và (2) => xy+yz+zx -2xyz <=1/3-2/27 =7/27
\(\RightarrowĐPCM\)
\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)
\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)
\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)
\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)
\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(\text{KQ quen thuộc:}xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
do đó: \(x=-y\text{ hoặc: }y=-z\text{ hoặc: }z=-x\) do đó: A=0
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
\(x^{2019}+y^{2019}+z^{2019}=\left(x+y+z\right)^{2019}\)
Em xin lỗi, đây mới là đề đúng ạ !!