K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

(x2-xy-6y2)+(2x-6y)-10 =0

[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0

(x-3y).(x+2y) + 2(x-3y) -10 = 0

(x-3y).(x+2y+2)=10

vì x,y nguyên x-3y và x+2y+2 phải nguyên

mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)

31 tháng 3 2020

bang 0 chu bang may  ha chung may

1 tháng 3 2020

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

24 tháng 10 2016

\(\hept{\begin{cases}x^2-xy-6y^2-2x+11y-3=0\left(1\right)\\x^2+y^2=5\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left(x-3y+1\right)\left(x+2y-3\right)=0\)

  • Nếu \(x-3y+1=0\Rightarrow x=-1+3y\) thay vào (2) ta được:

\(\left(-1+3y\right)^2+y^2=0\Rightarrow10y^2-6y+1=0\)

\(\Delta=\left(-6\right)^2-4\left(10\cdot1\right)=-4< 0\)(vô nghiệm)

  • Nếu \(x+2y-3=0\Rightarrow x=3-2y\)thay vào (2) ta được:

\(\left(3-2y\right)^2+y^2=0\)\(\Rightarrow5y^2-12y+9=0\)

\(\Delta=\left(-12\right)^2-4\left(5\cdot9\right)=-36< 0\)(vô nghiệm)

Vậy hpt trên vô nghiệm

24 tháng 10 2016

gio qua

NV
3 tháng 1 2024

\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)

\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)

Bảng giá trị:

x+y-2-5-115
x+3y-1-551
x-44210
y1-31-3

Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)

12 tháng 3 2017

từ pt suy ra((x-5)^2+4)((y+3)^2+5)-20=0

((x-5)(y+3))^2+5(x-5)^2+4(y+3)^2+20-20=0

((x-5)(y+3)^2+5(x-5)^2+4(y+3)^2=0

suy ra x=5,y=-3

7 tháng 7 2020

:))

\(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)

\(\Leftrightarrow x=2;y=1\)

Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?

7 tháng 7 2020

Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)

Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình

KL: S={(2;1)}

18 tháng 2 2024

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12 2024

3x + 9xy - 6y