1. Cho biểu thức P = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\) (với x > 0)
a) Rút gọn biểu thức P
b) Cho x=100, tính giá trị của P
c) Tìm GTNN của P
2. Cho biểu thức A=\(\left(\frac{x+\sqrt{9x}-1}{x+\sqrt{x}-2}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\) (với x \(\ge\) 0, x \(\ne\) 1)
a) Rút gọn biểu thức A
b) Tìm số tự nhiên x để \(\frac{1}{A}\) là số tự nhiên
1, a, ĐKXĐ: x > 0
\(\Rightarrow P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(\Rightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)
\(\Rightarrow P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)
\(\Rightarrow P=x+\sqrt{x}-2\sqrt{x}\)
\(\Rightarrow P=x-\sqrt{x}\)
b, Thay x=100 vào biểu thức P, ta có:
P= 100 - \(\sqrt{100}\)
\(\Rightarrow P=100-10=90\)
Vậy với x=100 thì P=90
c, Ta có: P= \(x-\sqrt{x}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi...
2, a, ĐKXĐ: x \(\ge\) 0, x \(\ne\) 1
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1-\sqrt{x}-2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)
\(\Rightarrow\)A= \(\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{x-1}{1}\)= x-1
b, Để \(\frac{1}{A}\)là số tự nhiên (x \(\ge0\), \(x\ne1\))
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
Vậy x=2 thì \(\frac{1}{A}\) là số tự nhiên.