\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+....+2019}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)
+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)
+Dấu "=" xảy ra khi
\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)
\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)
+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
( ĐKXĐ : \(x\ne\left\{0;-1;-2;...;-2019;-2020\right\}\))
\(=\frac{1}{x}-\frac{1}{\left(x+1\right)}+\frac{1}{\left(x+1\right)}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)}-\frac{1}{\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x\left(x+2020\right)}\)
\(=\frac{x+2020-x}{x\left(x+2020\right)}\)
\(=\frac{2020}{x\left(x+2020\right)}\)
Bài giải
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2019}-\frac{1}{x+2020}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x+2020}=\frac{2020}{x\left(x+2020\right)}\)
Bạn tham khảo tại đây:
Câu hỏi của lyly - Toán lớp 5 - Học toán với OnlineMath
\(1+\frac{2}{n\left(n+3\right)}=\frac{n^2+3n+2}{n\left(n+3\right)}=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+3\right)}\)
\(\Rightarrow A=\frac{2.3}{1.4}.\frac{3.4}{2.5}.\frac{4.5}{3.6}...\frac{2020.2021}{2019.2022}\)
\(\Rightarrow A=\frac{2.3.4...2020}{1.2.3...2019}.\frac{3.4.5...2021}{4.5.6...2022}=\frac{2020}{1}.\frac{3}{2022}=\frac{1010}{337}\)
iem chỉ biết làm câu đầu , NHƯNG KO BÍT có ĐUG HAY KO
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2018\cdot2019}{2\cdot3\cdot4\cdot..\cdot2019\cdot2020}\)
\(A=\frac{1}{2020}\)
Với \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\) , ta có : \(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}=\frac{1}{2020}\)
Ta có \(7A=\frac{7}{2020}\) , \(9A=\frac{9}{2020}\) , \(1+A=\frac{2021}{2020}\)
\(\frac{1+7A}{1+9A}=\frac{1+\frac{7}{2020}}{1+\frac{9}{2020}}=\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)
Ta thấy \(\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)có tử kém mẫu \(\frac{2}{2020}\)đơn vị và không thể rút gọn được nữa .
\(\Rightarrow\frac{1+7A}{1+9A}\)là p/s tối giản.