Ba đội máy cày gồm có 21 máy , cày 3 cánh đồng bằng nhau . Đội thứ nhất cày xong trong 3 ngày , đội thứ 2 cày xong trong 5 ngày , đội thứ 3 cày xong trong 6 ngày . Hỏi mỗi đội có bao nhiêu máy ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi so may cay cua 3 doi lan luot la a, b, c (dieu kien)
Theo bai ra ta co: 3a=5b=6c
=>a/10=b/6=c/5
Ma b-c=1
AD day ti so bang nhau ta duoc:
a/10=b/6=c/5=(b-c)/(6-5)=1
=>a=10;b=6;c=5
=>kl
Gọi số máy mỗi đội lần lượt có là: a,b,c ( máy ) ( a,c,b \(\in\)N* , b > 1 )
Theo bài ra , ta có : b - c = 1
Vì số máy tỉ lệ nghịch với số ngày nên: 3a = 5b= 6c
\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{b-c}{\frac{1}{5}-\frac{1}{6}}=\frac{1}{\frac{1}{30}}=30\)
\(\Rightarrow\hept{\begin{cases}a=30.\frac{1}{3}=10\\b=30.\frac{1}{5}=6\\c=30.\frac{1}{6}=5\end{cases}}\)
Vậy sô máy của 3 đội lần lượt là 10 ; 6 ; 5 máy.
gọi số máy cày của 3 đội lần lướt là a , b , c.
theo bài ra,ta có : b-c=1
vì số máy cày tỉ lệ nghịch với số ngày hoàn thành công việc nên ,ta có:
a/1/3=b/1/5=c/1/6
áp dụng tính chất dãy tỉ số bằng nhau , ta có
a/1/3=b/1/5=c/1/6=b-c/1/5-1/6=1/1/30
=> a=30 nhân\(\frac{1}{3}\)= 10
b=30 nhân \(\frac{1}{5}\)=6
c=30 nhân \(\frac{1}{6}\)=5
vậy đọi 1 có 10 máy
đội 2 có 6 máy
đọi 3 có 5 máy
Gọi số máy đội 1, 2 , 3 lần lượt là: \(x\), \(y\), \(z\) (\(x,y,z\in\) N*)
theo bài ra ta có : 3\(x\) = 5\(y\) = 6\(z\)
5\(y\) = 6\(z\) => \(\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{y-z}{6-5}\) = \(\dfrac{1}{1}\)
\(y=6.1=6\); \(z=5.1=5\); \(x\) = 5\(y:3\) = 5.6:3 = 10
Kết luận đội 1 có 10 máy; đội 2 có 6 máy; đội 3 có 5 máy
Gọi a,b,c lần lượt là số máy cày của đội thứ 1, thứ 2, thứ 3( máy, 0<a,b,c
Theo đề bài ta có
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{5}}=\dfrac{c}{\dfrac{1}{6}}\) và b-c=1
Áp dụng t/c DTSBN ta có
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{5}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a-b}{\dfrac{1}{5}-\dfrac{1}{6}}=\dfrac{1}{\dfrac{1}{30}}=30\)
=> a=\(\dfrac{1}{3}\times30=10\left(tm\right)\)
b=\(\dfrac{1}{5}\times30=6\left(tm\right)\)
c=\(\dfrac{1}{6}\times30=5\left(tm\right)\)
Vậy đội 1 có 10 máy cày, đội hai có 6 máy và đội 3 có 5 máy
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b-c}{6-5}=1\)
Do đó: a=10; b=6; c=5
Gọi số máy của đội 1;2;3 lần lượt là a,b,c
Theo đề, ta có: 6a=5b=10c
=>a/5=b/6=c/3
Áp dụng tính chất của DTSBN, ta được:
a/5=b/6=c/3=(b-c)/(6-3)=3/3=1
=>a=5; b=6; c=3
Gọi số máy của đội 1;2;3 lần lượt là a,b,c
Theo đề, ta có: 4a=5b=6c
=>a/15=b/12=c/10
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{15}=\dfrac{b}{12}=\dfrac{c}{10}=\dfrac{a-b}{15-12}=1\)
=>a=15; b=12; c=10
Gọi số máy cày của `3` đội lần lượt là `x,y,z (x,y,z \ne 0,`\(\in N\)`\ast )`
Vì năng suất các máy như nhau, cả `3` đội có cùng diện tích cánh đồng cần cày `->` số ngày và số máy là `2` đại lượng tỉ lệ nghịch
`\text {Nghĩa là: 4x=5y=6z hay}` `x/(1/4)=y/(1/5)=z/(1/6)`
Đội thứ nhất hơn đội thứ `2` là `3` ngày
`-> x-y=3`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/(1/4)=y/(1/5)=z/(1/6)=(x-y)/(1/4-1/5)=3/(1/20)=60`
`-> x/(1/4)=y/(1/5)=z/(1/6)=60`
`-> x=60*1/4=15, y=60*1/5=12, z=60*1/6=10`
Vậy, số máy của `3` đội lần lượt là `\text {15 máy, 12 máy, 10 máy}`
Gọi số máy 3 đội có là a;b;c \(\left(a;b;c\inℕ^∗\right)\)
Vì số ngày hoàn thành công việc và số máy cày là 2 đại lượng tỉ lệ nghịch
=> 3a = 5b = 6c
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{21}{\frac{21}{30}}=30\)
=> \(\hept{\begin{cases}a=10\\b=6\\c=5\end{cases}}\)
Vậy số máy cày của đội 1 là 10 máy ; đội 2 là 6 máy ; đội 3 là 5 máy