a) Cho M=70+71+72+73+........+72018+72019. Chứng minh M là bội số của 8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
\(7^1+7^2+7^3+...+7^{117}+7^{118}=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{116}\left(1+7+7^2\right)\)
\(=7.57+7^4.57+...+7^{116}.57=57\left(7+7^4+...+7^{116}\right)⋮57\)
Để chứng minh S chia hết cho 2 và S chia hết cho 57, ta sẽ xem xét từng thành phần trong công thức của S.
Đầu tiên, ta xét dãy từ 71 đến 72025. Trong dãy này, có 72025 - 71 + 1 = 71955 số.
Ta biết rằng nếu một số chia hết cho 2, thì số đó là số chẵn. Trong dãy từ 71 đến 72025, ta có 2 số lẻ liên tiếp (71 và 72), sau đó là 2 số chẵn liên tiếp (73 và 74), và tiếp tục lặp lại quy luật này. Vì vậy, trong 71955 số này, ta có 71955/2 = 35977.5 cặp số chẵn và lẻ.
Do đó, tổng của các số chẵn trong dãy này là 35977.5 * 2 = 71955.
Tiếp theo, ta xét số 72024. Ta biết rằng 72024 chia hết cho 2.
Cuối cùng, ta xét số 72025. Ta biết rằng 72025 chia hết cho 57, vì 72025 = 57 * 1265.
Vậy tổng S chia hết cho 2 và chia hết cho 57.
1) \(B=1+3+3^2+...+3^{1999}+3^{2000}\)
\(3B=3\cdot\left(1+3+3^2+...+3^{2000}\right)\)
\(3B=3+3^2+...+3^{2001}\)
\(3B-B=3+3^2+3^3+...+3^{2001}-1-3-3^2-...-3^{2000}\)
\(2B=3^{2001}-1\)
\(B=\dfrac{3^{2001}-1}{2}\)
2) \(C=1+4+4^2+...+4^{100}\)
\(4C=4\cdot\left(1+4+4^2+...+4^{100}\right)\)
\(4C=4+4^2+4^3+...+4^{101}\)
\(4C-C=4+4^2+4^3+...+4^{201}-1-4-4^2-....-4^{100}\)
\(3C=4^{101}-1\)
\(C=\dfrac{4^{101}-1}{3}\)
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
Đặt B=719+718+717+...+712+71
71B=7110+719+718+717+...+712
71B-B=7110-71
70B=7110-71=>B=\(\frac{71^{10}-71}{70}\)
Ta có A=70.\(\frac{71^{10}-71}{70}\)
=7110-71
Đặt \(a=71,\) ta có :
\(P=\left(a-1\right)\left(a^9+a^8+a^7+...+a^2+a+1\right)+1\)
\(P=a^{10}-1+1\)
\(P=a^{10}\)
\(P=\left(a^5\right)^2\)
cho ta \(P=\left(71^5\right)^2\)
Vậy \(P\) là số chính pương .
Chúc bạn học tốt
M = 70 + 71 + 72 + 73 + ... + 72018 + 72019
M = 1 + 71 + 72 + 73 + ... + 72018 + 72019
M = (1 + 71) + (72 + 73) + ... + (72018 + 72019)
M = (1 + 71) + 72. (1 + 71) + ... + 72018 + (1 + 71)
M = 8 + 72. 8 + 74. 8 + ... + 72018. 8
M = 8 . (72 + 74 + ... + 72018)
Vì 8 ⁝ 8
nên 8 . (72 + 74 + ... + 72018) ⁝ 8
Theo định nghĩa a ⁝ b <=> \(\left\{{}\begin{matrix}\\\\\end{matrix}\right.\)a là bội của b, b là ước của a
nên 8 . (72 + 74 + ... + 72018) ⁝ 8 => 8 . (72 + 74 + ... + 72018) là bội của 8
8 là ước của 8 . (72 + 74 + ... + 72018)
Vậy M là bội của 8
Thanks nha bạn!