Cho \(\Delta ABC\) có \(\widehat{BAC}\)=900. Kẻ AH\(\perp\)BC tại H. Trên đường thẳng \(\perp\) vs BC tại B lấy điểm D sao cho BD=AH
cm: a, \(\Delta AHB=\Delta DHB\)
b, AB//DH
c, tính \(\widehat{ACB}\) bt \(\widehat{BAH=35^0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH
Sửa đề: b: Cắt BD kéo dài tại I
a: Xét ΔDBC có
DM vừa là đường cao, vừa là trung tuyến
nên ΔDBC cân tại D
b: AH vuông góc với DM
DM vuông góc với BC
Do đó: AH//BC
=>góc DAI=góc DCB
=>góc CAH=góc DBC
c: Xét ΔDAI có góc DAI=góc DIA
nên ΔDAI cân tại D
=>DA=DI
=>AC=BI
Xét ΔABC và ΔICB có
AB=IC
BC chung
AC=IB
DO đó: ΔABC=ΔICB
a) Xét △BHA và △HBD có:
BHA = HBD (= 90o)
BH: chung
HA = BD (gt)
\(\Rightarrow\)△BHA = △HBD (2cgv) (*)
b) Từ (*), ta có: ABH = DHB (2 góc tương ứng)
Mà hai góc ở vị trí so le trong
\(\Rightarrow\)AB // DH
c) Ta có: BAH + HAC = 90o
\(\Rightarrow\)HAC = 90o - 35o = 55o
Xét △HAC vuông tại H
\(\Rightarrow\)HAC + HCA = 90o (tính chất hai góc phụ nhau trong △ vuông)
\(\Rightarrow\)HCA = 90o - 55o = 35o
\(\Rightarrow\)ACB = 35o
Vậy ACB = 35o
a)
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
b)
DB _I_ BC (gt)
AH _I_ BC (gt)
=> DB // AH
c)
Tam giác HAB vuông tại H có:
HAB + HBA = 900
350 + HBA = 900
HBA = 900 - 350
HBA = 550
Tam giác ABC vuông tại A có:
ABC + ACB = 900
550 + ACB = 900
ACB = 900 - 550
ACB = 350
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a, xét tam giác AHB và tam giác DBH có : HB chung
góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)
AH = BD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
b, tam giác AHB = tam giác DBH (câu a)
=> góc DHB = góc HBA (đn) mà 2 góc này so le trong
=> HD // AB (đl_
c, câu này dễ tự tính được
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
BA=HD
Do đó: ΔAHB=ΔDBH
b: Xét tứ giác AHDB có
AH//DB
AH=DB
Do đó: AHDB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ACB}=\widehat{BAH}=35^0\)