Tìm giá trị nhỏ nhất của biểu thức: A = (x - 2)2 + ( x - 4)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
\(A=\left(x-2\right)^2+\left(x-4\right)^2\)
\(=x^2-4x+4+x^2-8x+16\)
\(=2x^2-12x+20=2\left(x^2-6x+9\right)+2\)
\(=2\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(x-4\right)^2\ge0\forall x\end{matrix}\right.\Rightarrow A\ge0\forall x}\)
trl tử tế