K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

1:

Biểu thức toán học: \(\frac{a+b}{a-b}\)

Biểu thức pascal: (a+b)/(a-b)

2:

Biểu thức toán học: \(S=pi.r^2\)

Biểu thức pascal: S=pi*sqr(r)

3:

Biểu thức toán học: \(V=\sqrt{2}GH\)

Biểu thức pascal: V=sqrt(2)*g*h

4:

Biểu thức toán học: \(\frac{\frac{4x^2+2y}{2-3a}}{4a+b}\)

Biểu thức pascal: (\(4\cdot x^2+2\cdot y\))/(2-3*a)/(4*a+b)

5:

Biểu thức toán học: \(\sqrt{3a+b}>5\left(a+b\right)^2\)

Biểu thức pascal:\(\sqrt{3\cdot a+b}>5\cdot\left(a+b\right)^2\)

6:

Biểu thức toán học: \(\frac{\frac{5a^2+b}{6-5a}}{6a+b}\)

Biểu thức pascal: (5*sqr(a)+b)/(6-5*a)/(6*a+b)

7:

Biểu thức toán học: \(\left|a+b\right|>0\)

Biểu thức pascal: abs(a+b)>0

8:

Biểu thức toán học: \(sin\left(x^2\right)+cos\left(x^2\right)=1\)

Biểu thức pascal: sin(sqr(x))+cos(sqr(x))=1

9:

Biểu thức toán học: \(\frac{x+y}{2z}\)

Biểu thức pascal: (x+y)/(2*z)

11 tháng 11 2021

d: \(=\left|x-2y\right|+\left(x\cdot x\right)^2-2\cdot cos\left(x\right)\)

28 tháng 10 2017

Bài 2 :

f(x) có bậc 3 chia cho đa thức \(x^2-x-2\) có bậc 2 sẽ được thương có bậc 1

Gọi thương của phép chia f(x) cho \(x^2-x-2\)\(cx+d\)

\(\left(cx+d\right)\left(x^2-x-2\right)=f\left(x\right)\)

hay \(cx^3-cx^2-2cx+dx^2-dx-2d=x^3+ax+b\)

\(\Rightarrow cx^3+\left(d-c\right)x^2-\left(2c+d\right)x-2d=x^3+ax+b\)

\(\Rightarrow\left\{{}\begin{matrix}cx^3=x^3\\\left(d-c\right)x^2=0\\-\left(2c+d\right)x=ax\\-2d=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=1\\d-1=0\\a=-2.1-d\\-2d=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=1\\d=1\\a=-3\\b=-2\end{matrix}\right.\)

28 tháng 10 2017

Ôn tập phép nhân và phép chia đa thức

12 tháng 9 2021
Iqu6qtqyyw6wywqgqgwh7w7wuwvsvsgr6rhudbydrbyd4yhd4j7d4jcrd

3:

a: =>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: =>x^2=4

=>x=2 hoặc x=-2

c: =>(x-5)(2x+1+x+6)=0

=>(x-5)(3x+7)=0

=>x=5 hoặc x=-7/3

12 tháng 5 2023

1.

a. 2x - 6 > 0 

\(\Leftrightarrow\)  2x  > 6

\(\Leftrightarrow\)    x  > 3

S = \(\left\{x\uparrow x>3\right\}\) 

b. -3x + 9 > 0

\(\Leftrightarrow\)  - 3x   > - 9 

\(\Leftrightarrow\)      x < 3

S = \(\left\{x\uparrow x< 3\right\}\) 

c. 3(x - 1) + 5 > (x - 1) + 3

\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3

\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0

\(\Leftrightarrow\) 2x > 0 

\(\Leftrightarrow\)   x > 0

S = \(\left\{x\uparrow x>0\right\}\) 

d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\) 

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)

\(\Leftrightarrow2x-3>x\)

\(\Leftrightarrow2x-3-x>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

\(S=\left\{x\uparrow x>3\right\}\)

2.

a. 

Ta có: a > b

3a > 3b (nhân cả 2 vế cho 3)

3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)

b. Ta có: a > b

a > b (nhân cả 2 vế cho 1)

a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)

Ta có; 3 > 1

b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)

Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1 

c.

5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)

5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )

a > b

3.

a. 2x(x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) 

\(S=\left\{0,-5\right\}\)

b. x2 - 4 = 0 

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(S=\left\{0,4\right\}\)

d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0

\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

\(S=\left\{5,\dfrac{-7}{3}\right\}\)

 

2:

a: Áp dụng tính chất của DTSBN, ta được:

a/5=b/-2=(a+b)/(5-2)=12/3=4

=>a=20; b=-8

b: Áp dụng tính chất của DTSBN, ta được:

a/4=b/5=(3a-2b)/(3*4-2*5)=42/2=21

=>a=84; b=105

7 tháng 8 2017

dài quá, làm từ từ nhé

1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)

\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)

\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\left(a-2b\right)\)

2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)

\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)

7 tháng 8 2017

3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)

\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)

\(=\left(x-2-2x+1\right)\left(2x+1\right)\)

\(=\left(-x-1\right)\left(2x+1\right)\)

4, câu này đề thiếu

5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)

\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)

\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)

\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)

\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)