K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

 \(A=\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)

\(A=\sqrt{2-2\sqrt{2}.1+1}-\sqrt{4+2.2\sqrt{2}+2}\)

\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(A=\left|\sqrt{2-1}\right|-\left|2+\sqrt{2}\right|\)

\(A=\sqrt{2}-1-2-\sqrt{2}\)|

\(A=-3\)

13 tháng 12 2019

\(A=\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{2}-1-\left(2+\sqrt{2}\right)\)

\(=\sqrt{2}-1-2-\sqrt{2}\)

\(=-1-2\)

\(=-3\)

23 tháng 7 2019

\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right).\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)

\(=2\)

\(b,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

18 tháng 7 2019

Bạn xem hộ mk đề cậu b nhé căn 5- căn 2 hay là căn 5 - 2undefined

18 tháng 7 2019

căn 5 - căn 2 nhé bn

25 tháng 8 2019

\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}.1}+1}}\)

=\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

=\(\sqrt{6+2\sqrt{2}.\sqrt{3-\left|\sqrt{3}+1\right|}}\)

=\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)

=\(\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)

=\(\sqrt{6+2.\left(\sqrt{2}.\sqrt{2-\sqrt{3}}\right)}\)

=\(\sqrt{6+2.\left(\sqrt{4-2\sqrt{3}}\right)}\)

=\(\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}\)

=\(\sqrt{6+2.\left|\sqrt{3}-1\right|}\)

=\(\sqrt{6+2\sqrt{3}-2}\)

=\(\sqrt{4+2\sqrt{3}}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}\)

=\(\left|\sqrt{3}+1\right|\)

=\(\sqrt{3}+1\)

6 tháng 8 2021

a, Sửa đề:

\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)

23 tháng 9 2015

Áp dụng hằng đẳng thức \(\left(x-y\right)\left(x+y\right)=x^2-y^2\)  và tính chất \(\sqrt{x}\cdot\sqrt{y}=\sqrt{xy}\)ta nhận được 

\(b=\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}}}\cdot\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)

    \(=\sqrt{\left(3+\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\left(3-\sqrt{6+\sqrt{7+\sqrt{2}}}\right)}\)

  
  \(=\sqrt{3^2-\left(6+\sqrt{7+\sqrt{2}}\right)}=\sqrt{3-\sqrt{7+\sqrt{2}}.}\)

Do đó \(b=\sqrt{3-\sqrt{7+\sqrt{2}}}.\)  Suy ra 

\(a\cdot b=\sqrt{2+\sqrt{2}}\cdot\sqrt{3+\sqrt{7+\sqrt{2}}}\cdot\sqrt{3-\sqrt{7+\sqrt{2}}}\)

         \(=\sqrt{2+\sqrt{2}}\sqrt{\left(3+\sqrt{7+\sqrt{2}}\right)\left(3-\sqrt{7+\sqrt{2}}\right)}\)

        \(=\sqrt{2+\sqrt{2}}\sqrt{3^2-\left(7+\sqrt{2}\right)}\)

       \(=\sqrt{2+\sqrt{2}}\sqrt{2-\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2^2-2}=\sqrt{2}.\)

Vậy \(a\cdot b=\sqrt{2}.\)
   

19 tháng 10 2018

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

17 tháng 11 2017

Cái này mà là toán lớp 9 đó hả. Giống toán rút gọn của lớp 7 thế.

\(A=\dfrac{7-6\sqrt{2}}{\sqrt{6}-\sqrt{3}-\sqrt{2}}=\dfrac{\left(6-6\sqrt{2}+3\right)-2}{\sqrt{6}-\sqrt{3}-\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{6}-\sqrt{3}\right)^2-2}{\sqrt{6}-\sqrt{3}-\sqrt{2}}=\dfrac{\left(\sqrt{6}-\sqrt{3}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}{\sqrt{6}-\sqrt{3}-\sqrt{2}}=\sqrt{6}-\sqrt{3}+\sqrt{2}\)

20 tháng 9 2021

a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)

b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)

c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)

d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)