K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Trường hợp 1: P=3

\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố

Trường hợp 2: P>3 

\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)

Với P=3k+2(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)

Vậy: P=3

b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố

Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố

=> Loại

Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố

=> Loại

Vậy: P=3

25 tháng 9 2019

30 tháng 9 2021

\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)

30 tháng 9 2021

Bài 1:

a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)

b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)

c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)

d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)

Bài 2:

a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)

b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)

c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

Bài 3:

a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)

b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

25 tháng 1 2021

thank you bn nha

 

12 tháng 10 2020

Ta có \(\hept{\begin{cases}3x=y\\5y=4z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{1}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

Đặt \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=4k\\y=12k\\z=15k\end{cases}}\)

Khi đó 23x - 7y - 2z = - 44

<=> 23.4k - 7.12k - 2.15k = -44

=> 92k - 84k - 30k = -44

=> -22k = -44

=> k = 2

=> x = 8 ; y = 24 ; z = 30 

28 tháng 2 2018

24 tháng 8 2018

9 tháng 1 2018

Đề kiểm tra Toán 6 | Đề thi Toán 6

16 tháng 7 2016

a) 2x = 16 <=>x=8

b) 3x+1 = 9x <=>9x-3x=1

<=>6x=1 <=>x=1/6

c) 23x+2 = 4x+5 <=>23x-4x=5-2

<=>19x=3 <=>x=3/19

d) 32x-1 = 243 <=>32x=244

<=>x=61/8

16 tháng 7 2016

a/ 2x=16

x=8

b/ 3x+1=9x

3x-9x=-1

-6x=-1

x=1/6

c/ 23x+2=4x

23x-4x=-2

19x=-2

x=-2/19

d/ 32x-1=243

32x=244

x=61/8