K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

11 tháng 7 2017

Trình bày xấu chưa từng thấy

14 tháng 4 2018

Nếu:    \(x-1\ge0\)  \(\Leftrightarrow\)\(x\ge1\)  thì:   \(\left|x-1\right|=x-1\)

Khi đó ta có:      \(x^2-3x+2+x-1=0\)

                 \(\Leftrightarrow\)          \(\left(x-1\right)^2=0\)

                 \(\Leftrightarrow\)              \(x-1=0\)

                 \(\Leftrightarrow\)                \(x=1\)  (thỏa mãn)

Nếu   \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\)  thì        \(\left|x-1\right|=1-x\)

Khi đó ta có:      \(x^2-3x+2+1-x=0\)

                   \(\Leftrightarrow\)     \(x^2-4x+3=0\)

                   \(\Leftrightarrow\)  \(\left(x-1\right)\left(x-3\right)=0\)

                   \(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)

Vậy....

14 tháng 4 2018

Lập bảng xét dấu :

x 1 
x-1-0+

+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)

\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)

\(\Leftrightarrow x^2-3x+2+x-1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)

\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)

\(\Leftrightarrow x^2-3x+2+1-x=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )

Vậy phương trình có tập nghiệm  \(S=\left\{1\right\}\)

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

7 tháng 1 2018

Cũng hay đó, đã

7 tháng 1 2016

\(\left(x^2+\frac{x}{2}\right)^2+\left(\frac{x}{2}+1\right)^2+\frac{x^2}{2}=0\)
Cả 2 cái trên kia đều lớn hơn hoặc bằng 0 nhưng dấu "=" không xảy ra đồng thời nên VT>0 -> vô nghiệm

7 tháng 1 2016

(x-1)(x4+x3+x2+x+1)=0
x5-1=0
x5=1
x=1 <=> x-1=0
<=> Phương trình vô nghiệm
 

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3