K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

F(-1) thì y= 6

F(2) thì y= 3

F(-1/2)= 3

Ta có : \(y=f\left(x\right)=2x^2-3x+1\)

\(f\left(-1\right)=2\left(-1\right)^2-3.\left(-1\right)+1=2.1-\left(-3\right)+1=2+3+1=6\)

\(f\left(2\right)=2.2^2-3.2+1=2.4-6+1=8-6+1=3\)

\(f\left(\frac{-1}{2}\right)=2\left(\frac{1}{2}\right)^2-3.\frac{1}{2}+1=2.\frac{1}{4}-\frac{3}{2}+1=\frac{1}{2}-\frac{3}{2}+\frac{2}{2}=0\)

25 tháng 12 2021

Cho hàm số y=f(x)= −3x.

Ta có f(\(\dfrac{-3}{2}\)) = -3. (\(\dfrac{-3}{2}\))

                    = \(\dfrac{-3.\left(-3\right)}{2}\)

                    =\(\dfrac{9}{2}\)

Ta có f(-1) = -3. (-1)

                 = 3

Vậy f(\(\dfrac{-3}{2}\)) = \(\dfrac{9}{2}\) và f(-1) = 3.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

4 tháng 12 2021

\(\left[{}\begin{matrix}f\left(-1\right)=-1^2+2\cdot-1-1=-2\\f\left(0\right)=0^2+2\cdot0-1=-1\\f\left(1\right)=1^2+2\cdot1-1=2\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

a) \(f\left( 1 \right) = 3.1 = 3;f\left( { - 2} \right) = 3.\left( { - 2} \right) =  - 6;f\left( {\dfrac{1}{3}} \right) = 3.\dfrac{1}{3} = 1\).

b) Ta có: \(f\left( { - 3} \right) = 3.\left( { - 3} \right) =  - 9;f\left( { - 1} \right) = 3.\left( { - 1} \right) =  - 3\)

\(f\left( 0 \right) = 3.0 = 0;f\left( 2 \right) = 3.2 = 6;f\left( 3 \right) = 3.3 = 9\);

Ta lập được bảng sau

\(x\)

–3

–2

–1

0

1

2

3

\(y\)

–9

-6

–3

0

3

6

9

NV
11 tháng 3 2022

2.

\(I=\int e^{3x}.3^xdx\)

Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)

\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)

\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)

NV
11 tháng 3 2022

1.

\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)

Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)

\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)

\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

\(f\left( { - 3} \right) =  - {\left( { - 3} \right)^2} + 1 =  - 9 + 1 =  - 8\);

\(f\left( { - 2} \right) =  - {\left( { - 2} \right)^2} + 1 =  - 4 + 1 =  - 3\);

\(f\left( { - 1} \right) =  - {\left( { - 1} \right)^2} + 1 =  - 1 + 1 = 0\);

\(f\left( 0 \right) =  - {0^2} + 1 = 0 + 1 = 1\);

\(f\left( 1 \right) =  - {1^2} + 1 =  - 1 + 1 = 0\);