Tìm x:\(\frac{2x-3}{-4}=\frac{-81}{2x-3}\left(x\right)\ne\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
\(\frac{\left(x+1\right)^2-\frac{x}{2}}{4}=\frac{\left(2x-3\right)^2}{3}-\frac{\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}}{4}\)
\(\Rightarrow3\left[\left(x+1\right)^2-\frac{x}{2}\right]=4\left(2x-3\right)^2-3\left[\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}\right]\)
\(\Rightarrow3\left(x+1\right)^2-\frac{3x}{2}=4\left(2x-3\right)^2-\frac{3\left(x+1\right)}{4}+\frac{3x\left(3-2x\right)}{3}\)
\(\Rightarrow36\left(x+1\right)^2-18x=48\left(2x-3\right)^2-9\left(x+1\right)+12x\left(3-2x\right)\)
=> 36.(x2 + 2x + 1) - 18x = 48.(4x2 - 12x + 9) - 9(x + 1) + 12x(3 - 2x)
=> 36x2 + 72x + 36 - 18x - 192x2 + 576x - 432 + 9x + 9 - 36x + 24x2 = 0
=> -132x2 + 603x - 387 = 0
Có: \(\Delta=603^2-4.\left(-387\right)\left(-132\right)=159273\Rightarrow\sqrt{\Delta}=\sqrt{159273}\)
\(\Rightarrow x=\frac{-603+\sqrt{159273}}{-264}\) hoặc \(x=\frac{-603-\sqrt{159273}}{-264}\)
Vậy phương trình có 2 nghiệm : x = \(\left\{\frac{-603+\sqrt{159273}}{-264};\frac{-603-\sqrt{159273}}{-264}\right\}\)
Câu này không có nghiệm nguyên nha bạn.
Bài 1:
b) \(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-\frac{1}{2}\\x=0+\frac{3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{4}\right\}.\)
c) \(\left(2x-5\right)^4=81\)
\(\Rightarrow2x-5=\pm3\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3+5=8\\2x=\left(-3\right)+5=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8:2\\x=2:2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{4;1\right\}.\)
d) \(3^{x+1}+3^{x+3}=810\)
\(\Rightarrow3^x.3^1+3^x.3^3=810\)
\(\Rightarrow3^x.\left(3^1+3^3\right)=810\)
\(\Rightarrow3^x.30=810\)
\(\Rightarrow3^x=810:30\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
a)Ta có:
\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Leftrightarrow5x-5=4x+8\)
\(\Leftrightarrow5x-4x=8+5\)
\(\Leftrightarrow x=13\)
b)Ta có:
\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)
c)Ta có:
\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)
d)Ta có:
\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:
\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)
\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(\left|\left(x+\frac{1}{2}\right).\left|2x-\frac{3}{4}\right|\right|=2x-\frac{3}{4}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|.\left|2x-\frac{3}{4}\right|=2x-\frac{3}{4}\)
\(\Rightarrow2x-\frac{3}{4}\ge0\) (1)
Lúc này ta có: \(\left|x+\frac{1}{2}\right|.\left(2x-\frac{3}{4}\right)=2x-\frac{3}{4}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|.\left(2x-\frac{3}{4}\right)-\left(2x-\frac{3}{4}\right)=0\)
\(\Rightarrow\left(2x-\frac{3}{4}\right).\left(\left|x+\frac{1}{2}\right|-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=0\\\left|x+\frac{1}{2}\right|-1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{3}{4}\\\left|x+\frac{1}{2}\right|=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{3}{8}\\x+\frac{1}{2}=1\\x+\frac{1}{2}=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{3}{8}\\x=\frac{1}{2}\\x=\frac{-3}{2}\end{array}\right.\)
Mà \(x\ge\frac{3}{8}\) do \(2x-\frac{3}{4}\ge0\)
Vậy \(x\in\left\{\frac{3}{8};\frac{1}{2}\right\}\)
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ