Cho biết:a/b+c=b/c+a=c/a+b.tính A=2020-b+c/a+c+a/b-a+b/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét a+b+c=0
=>a+b=-c;a+c=-b;b+c=-a
Ta có: B=(1+b/a)(1+a/c)(1+c/b)=[(a+b)/a].[(c+a)/c].[(b+c)/b]=(-c/a).(-b/c).(-a/b)=-1
Xét a+b+c khác 0
Áp dụng t/c dãy tỉ số=nhau=>a=b=c
Thay vào bt B rồi tính(tương tự trường hợp trên)
đáp số:B=8
+> \(TH1:a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+c+a}{a+b+c}=2\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{a+b}{c}=2\\\frac{b+c}{a}=2\\\frac{c+a}{b}=2\end{cases}}\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{b+a}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)
\(=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)
\(=8\)
+>\(TH2:a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Từ trường hợp 1 ta có :
\(M=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
\(=-1\)
Vậy giá trị biểu thức M là 8 hoặc -1
a)Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\left(a,b,c,d\ne0\right)\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(c\ne d,a\ne b\right)\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
b)a)Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a+2019}{a-2019}=\frac{b+2020}{b-2020}\left(đk:a\ne\pm2019,b\ne\pm2020\right)\)\(\Leftrightarrow\frac{a+2019}{b+2020}=\frac{a-2019}{b-2020}=\frac{a+2019+a-2019}{b+2020+b-2020}=\frac{\left(a+2019\right)-\left(a-2019\right)}{\left(b+2020\right)-\left(b-2020\right)}=\frac{a}{b}=\frac{2019}{2020}\left(a,b\ne0\right)\left(đpcm\right)\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
mà \(a+b+c\ne0\)
nên \(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)
\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)
Đoạn cuối em bị nhầm rồi kìa. \(\frac{a^{2020}+b^{2020}+c^{2020}}{(a+b+c)^{2020}}=\frac{3a^{2020}}{(3a)^{2020}}=\frac{3}{3^{2020}}=\frac{1}{3^{2019}}\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có : a3 + b3 + c3 = 3abc
=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0
=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
=> a2 + b2 + c2 - ab- ac - bc = 0
=> 2(a2 + b2 + c2 - ab- ac - bc) = 0
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)
Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)
\(Q=\frac{a}{b+2020-a}+\frac{b}{c+2020-b}+\frac{c}{a+2020-c}\)
\(Q=\frac{a}{b+a+b+c-a}+\frac{b}{c+a+b+c-b}+\frac{c}{a+a+b+c-c}\)
\(Q=\frac{a}{2b+c}+\frac{b}{2c+a}+\frac{c}{2a+b}\)
Áp dụng BĐT Cauchy-Schwarz:
\(Q=\frac{a^2}{a\cdot\left(2b+c\right)}+\frac{b^2}{b\cdot\left(2c+a\right)}+\frac{c^2}{c\cdot\left(2a+b\right)}\ge\frac{\left(a+b+c\right)^2}{3\cdot\left(ab+bc+ca\right)}\ge\frac{3\cdot\left(ab+bc+ca\right)}{3\cdot\left(ab+bc+ca\right)}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2020}{3}\)
\(a^{2020}+b^{2020}+c^{2020}=a^{1010}b^{1010}+b^{1010}c^{1010}+c^{1010}a^{1010}\)
\(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}-a^{1010}b^{1010}-b^{1010}c^{1010}-c^{1010}a^{1010}=0\)
\(\Leftrightarrow2a^{2020}+2b^{2020}+2c^{2020}-2a^{1010}b^{1010}-2b^{1010}c^{1010}-2a^{1010}c^{1010}=0\)
\(\Leftrightarrow\left(a^{2020}-2a^{1010}b^{1010}+b^{2020}\right)+\left(b^{2020}-2b^{1010}c^{1010}+c^{2020}\right)+\left(c^{2020}-2a^{1010}c^{1010}+a^{2020}\right)=0\)
\(\Leftrightarrow\left(a^{1010}-b^{1010}\right)^2+\left(b^{1010}-c^{1010}\right)^2+\left(c^{1010}-a^{1010}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a^{1010}-b^{1010}\right)=0\\b^{1010}-c^{1010}=0\\c^{1010}-a^{1010}=0\end{cases}}\Leftrightarrow a^{1010}=b^{1010}=c^{1010}\Leftrightarrow\pm a=\pm b=\pm c\)
Rồi thay :> Còn thay kiểu nào thì mình cũng hong biết :">