Cho biểu thức: A=\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}\)
Tìm giá trị nhỏ nhất của biểu thức A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
để A nhỏ nhất <=>\(x^2+2x+3\)nhỏ nhất (vi (\(\left(x+2\right)^2\)\(\ge\) 0 )
A = \(x^2+2x+1+2\)
<=> A =\(\left(x+1\right)^2+2\)
vì \(\left(x+1\right)^2\)\(\ge\)o
nên \(\left(x+1\right)^2+2\ge2\)
<=>A \(\ge2\)
đấu = xảy ra <=>x+1=0
<=>x=-1
vậy min A =2 <=>x=-1
Ta có:
\(2A=\frac{2x^2+4x+6}{\left(x+2\right)^2}=\frac{\left(x^2+4x+4\right)+x^2+2}{\left(x+2\right)^2}=1+\frac{x^2+2}{\left(x+2\right)^2}\)
Đặt \(B=\frac{x^2+2}{\left(x+2\right)^2}\) và \(y=x+2\Leftrightarrow x=y-2\)
Vì \(A\) đạt giá trị nhỏ nhất \(\Leftrightarrow\) \(B\) nhỏ nhất nên ta có:
\(B=\frac{\left(y-2\right)^2+2}{y^2}=\frac{y^2-4y+4+2}{y^2}=\frac{y^2-4y+6}{y^2}=1-\frac{4}{y}+\frac{6}{y^2}\)
\(B=\frac{1}{3}+\frac{2}{3}-\frac{4}{y}+\frac{6}{y^2}=\frac{1}{3}+\left(\sqrt{\frac{2}{3}}\right)^2-2.\sqrt{\frac{2}{3}.}\frac{\sqrt{6}}{y}+\left(\frac{\sqrt{6}}{y}\right)^2\)
\(B=\frac{1}{3}+\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2\ge\frac{1}{3}\) với mọi \(y\)
Do đó:
\(2A=1+\frac{1}{3}+\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2\)
\(2A=\frac{4}{3}+\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2\ge\frac{4}{3}\) với mọi \(y\)
\(\Rightarrow\) \(A\ge\frac{2}{3}\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\left[\left(\sqrt{\frac{2}{3}}\right)-\frac{\sqrt{6}}{y}\right]^2=0\)
\(\Leftrightarrow\sqrt{\frac{2}{3}}-\frac{\sqrt{6}}{y}=0\)
\(\Leftrightarrow y=3\)
\(\Leftrightarrow x=1\)
Vậy \(Min\) \(A=\frac{2}{3}\) \(\Leftrightarrow\) \(x=1\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1