K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

a, ĐKXĐ : \(x,y\ne0\)

- Ta có : \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y}=1\\\frac{3}{x}+\frac{4}{y}=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{3}{x}-\frac{3}{y}=3\\\frac{3}{x}+\frac{4}{y}=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y}=1\\-\frac{7}{y}=-2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{\frac{2}{7}}=1\\y=\frac{2}{7}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{9}{7}\\y=\frac{2}{7}\end{matrix}\right.\)

Vậy phương trình có duy nhất 1 nghiệm là \(S=\left\{\frac{9}{7};\frac{2}{7}\right\}\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
NV
10 tháng 7 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)

\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)

2/ ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)

4/ Bạn tự giải

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 1:

Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)

Khi đó hệ PT trở thành:

\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)

Có: \(a^4+b^4=81\)

\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)

\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)

\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)

\(\Leftrightarrow 2a^2b^2-36ab=0\)

\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)

Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$

$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$

Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$

Dễ thấy pt này vô nghiệm nên loại

Vậy......

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 2:

ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)

HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$

$\Rightarrow (a,b)=(2,1); (1,2)$

Nếu $(a,b)=(2,1)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)

$y=1\rightarrow x=3$

$y=-1\rightarrow y=5$

Nếu $(a,b)=(1,2)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)

\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)

Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$

Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$

Vậy...........

NV
25 tháng 2 2020

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{2y+1}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u+v=\frac{6}{5}\\3u-2v=\frac{11}{10}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\frac{1}{2}\\v=\frac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=2\\2y+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

b/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}x+y=u\\\sqrt{x+1}=v\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u+v=4\\u-3v=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=1\\\sqrt{x+1}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x+1=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)