K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

\(4x^4-4x^3+4=4y^2\)

Ta có:

\(\left(2x^2-x-1\right)^2< 4x^4-4x^3+4=4y^2< \left(2x^4-x+3\right)^2\)

\(\Leftrightarrow\left(4x^4-4x^3+4\right)=\left(\left(2x^2-x\right)^2;\left(2x^2-x+1\right)^2;\left(2x^2-x+2\right)^2\right)\)

Làm nốt

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

9 tháng 4 2023

\(x.\left(y-1\right)+y=2\)

\(x.\left(y-1\right)+\left(y-1\right)=2-1\)

\(\left(y-1\right)\left(x-1\right)=1\)

(y-1) ; (x-1) có 2 cặp: \(y-1=1;x-1=1\)  hoặc \(y-1=-1;x-1=-1\)

\(x;y\) có  2 cặp: \(y=2;x=2\) hoặc \(y=0;x=0\)

9 tháng 4 2023

\(x\cdot\left(y-1\right)+y=2\\ xy-x+y=2\\ y\cdot\left(x+1\right)-x-1=2-1\\ y\cdot\left(x+1\right)-\left(x+1\right)=1\\ \left(x+1\right)\left(y-1\right)=1\)

mà `x;y in ZZ => x+1;y-1 in ZZ`

nên `x+1;y-1` thuộc ước nguyên của `1`

`=>x+1;y-1 in {1;-1}`

`=>x in {0;-2}; y in {2;0}`

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

5 tháng 11 2017

 Câu trả lời hay nhất:  trừu tượng. nếu không nguyên 
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định 
đặt x+y=a=> y=a-x 
thay vào pt điều kiện 

2(x^2+1)+x^2=2(a-x)(x+1) 
3x^2+2 =2ax+2a-2x^2-2x 
5x^2+2x-2ax+2-2a=0 
5x^2+2(1-a)x+2(1-a)=0 
(1-a)^2-10(1-a)>=0 
(1-a)(1-a-10)>=0 
(a-1)(a+9)>=0 
a<=-9 
hoặc 
a>=1 

(x+y)<-9 hoặc (x+y)>=1

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

27 tháng 9 2016

Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?

27 tháng 9 2016

hỏi nhanh thế?