cho tam giác ABC, với E là trung điểm của BC. Trên tia đối của tia EA lấy điểm F sao cho EA=EF. Chứng minh
a) Tam giác AEC=tam giác FEB b) AC=FC và AC song song FB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AEC và tam giác FEB có:
AE=EF(GT)
góc AEC =góc FEB (đói đỉnh)
BE=CE (GT)
nên tam giác AEC = tam giác FEB (c.g.c)
=>AC//FB (2 cạnh tương ứng)
b)Xét tam giác AEB và tam giác FEC có:
BE=CE (GT)
góc AEB=góc FEC (đói đỉnh)
AE=FE (GT)
nên tam giác AEB= tam giác FEC (c.g.c)
=>AB=FC (2 cạnh tương ứng )
a: Xét ΔABC và ΔEFC có
CA=CE
FC=BC
AB=EF
Do đó: ΔABC=ΔEFC
Xét tam giác AMC và tam giác DMB có:
AM =MD (gt )
BM =MC (gt )
goc MAC=goc MDB(so le trong)
=>Tam giac AMC=tam giac DMB(c.g.c)
Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD
=>AC //BD
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
a. Xét 2\(\Delta\): ABE và DEC có:
\(\left\{{}\begin{matrix}AE=ED\left(gt\right)\\\widehat{AEB}=\widehat{CED}\left(đối.đỉnh\right)\\BE=EC\left(gt\right)\end{matrix}\right.\)
Vậy \(\Delta ABE=\Delta DEC\left(c.g.c\right)\)
b. Do \(\Delta ABE=\Delta DEC\)
\(\Rightarrow\widehat{ABE}=\widehat{DCE}\)
\(\Rightarrow\) AB // CD
c. Ta có: AE là điểm nối từ đỉnh tam giác vuông tới trung điểm cạnh huyền
\(\Rightarrow AE=ED=BE=EC\)
\(\Rightarrow AD=BC\)
Xét 2\(\Delta\): ACD và ABC có:
\(\left\{{}\begin{matrix}AC.chung\\CD=AB\left(theo.câu.a\right)\\AD=BC\left(CMT\right)\end{matrix}\right.\)
Vậy \(\Delta ACD=\Delta ABC\left(c.c.c\right)\)
d. Xét tương tự với 2\(\Delta\) ABC và ABD ta được: \(\Delta ABC=\Delta ABD\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
Mà: \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{ABD}=90^o\)
Vậy tam giác CBC là tam giác vuông
a)Xét tam giác AEB và tam giác DEC có
AE=DE(gt)
góc AEB = góc DEC ( đối đỉnh)
EB=EC(E là trung điểm BC)
Vậy tam giác AEB = tam giác DEC(c.g.c)
b từ 2 tg trên = nhau
=>góc ABE = góc ECD
=>AB//CD
Vậy AB//CD
c)Xét tam giác ACD và tam giác DBA có
góc ACD = góc DBA(= 90 độ)
AB=CD(2 tg phần a = nhau)
AD chung
Vậy tam giác ACD = tam giác DBA( cạnh huyền,cạnh góc vuông)
d)từ 2 tam giác trên bằng nhau
=> góc BAC = góc BDC
=> góc BDC = 90 độ
=> tam giác DBC vuông tại D
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)
Vậy \(AC=8cm\)
b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\)
Xét tam giác ABC và tam giác ADC có:
\(\widehat{CAB} = \widehat{CAD}=90^O\)
AC chung
AB=AD(giả thiết)
\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)
c. Xét tam giác DCB có :
A là trung điểm BD,
AE song song BC
\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) )
d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O nằm trên DF hay O, D, F thẳng hàng.
Chúc em học tốt ^^
a)
Theo định lí py ta go trong tam giác vuông ABC có :
BC2 = AB2 + AC2
Suy ra : AC2 = BC2 - AB2
AC2 =102 - 62
AC = căn bậc 2 của 36 = 6 (cm )
b)
Xét tam giác ABC và tam giác ADC có :
AC cạnh chung
Góc A1 = góc A2 = 90 độ (gt )
AB = AD ( gt )
suy ra : tam giác ABC = tam giác ADC ( c- g -c )