Cho \(a,b,c>0\)thỏa \(a^2+b^2+c^2=1\). Tìm GTNN của \(T=a+b+c+\frac{1}{abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Cho a,b,c>0 thỏa mãn a+b+c=3 Tìm GTNN của
\(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)
Một cách tương ứng khi đó:
\(\Rightarrow P=a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}\)
\(=3+3-\frac{\frac{3^2}{3}+3}{2}=3\)
Đẳng thức xảy ra tại a=b=c=1
sử dụng bđt Cosi ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a-1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
chứng minh tương tự ta cũng được \(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge a+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)
từ (1)(2)(3) => \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)
mặt khác a2+b2+c2>= ab+bc+ca hay 3(ab+bc+ca) =< (a+b+c)2=9
do đó \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)
dấu "=" xảy ra khi a=b=c=1
Nếu mọi người nhận ra sẽ thấy cái điều kiện a+b+c=3 ko liên quan tới p thì sao mà giải đề này sai rồi
Cần CM: \(\frac{1}{a^2+b+c}=\frac{1}{a^2-a+3}\ge\frac{-1}{9}a+\frac{4}{9}\)
\(\Leftrightarrow\)\(a^3-5a^2+7a-3\le0\)\(\Leftrightarrow\)\(\left(a-3\right)\left(a-1\right)^2\le0\) ( đúng do \(0< a< 3\) )
\(\Rightarrow\)\(P\ge\frac{-1}{9}\left(a+b+c\right)+\frac{12}{9}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT AM - GM ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
Chứng minh tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\)
\(\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\)
Từ: \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)
Lại có: \(a^2+b^2+c^2\ge ab+bc+ca\)
Hay: \(3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\)
Vì vậy: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)
\(\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\Rightarrow Min_P=3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
* Dũng kỹ thuật Cô-si ngược dấu
\(P=\left(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\right)+\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
+ \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)
\(\ge3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
+ \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\frac{a+b+c}{2}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
Do đó: \(P\ge3\). Dấu "=" \(\Leftrightarrow a=b=c=1\)
Cô-si Engel :
\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{a+b+c+6}\)
\(\ge\frac{a+b+c+2.3\sqrt[3]{\sqrt{ab}.\sqrt{bc}.\sqrt{ac}}}{a+b+c+6}=\frac{a+b+c+6\sqrt[3]{abc}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)
Nguyễn Linh Chi Thanks cô,e đổi biến lộn ạ:(
Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
Ta có:
\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\)
\(=\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\)
\(=\frac{1}{1+\frac{2y}{x}}+\frac{1}{1+\frac{2z}{y}}+\frac{1}{1+\frac{2x}{z}}\)
\(=\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\)
\(=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Câu hỏi của Nguyễn Trung Hiếu - Toán lớp 9 - Học toán với OnlineMath