Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}=0\left(x,y,z\ne0\right).\)
Tinh
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé
vô phần thống kê hỏi đáp của mình để coi hình nhé
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)
\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)
\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)
\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)
\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)
\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)
Áp dụng t/c dãy tỉ số bằng nhau có:
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x-xyz-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)
=> \(\frac{x^2-yz}{x\left(1-yz\right)}=x+y+z\)
<=> \(\frac{x^2-yz}{x\left(1-yz\right)}-\frac{\left(x+y+z\right)x\left(1-yz\right)}{x\left(1-yz\right)}=0\)
<=> \(\frac{x^2-yz-\left(x^2+yx+zx\right)\left(1-yz\right)}{x\left(1-yz\right)}\)=0
<=> \(x^2-yz-x^2+x^2yz-xy+xy^2z-xz+xyz^2=0\)
<=> \(-yz-xy-xz+xyz\left(x+y+z\right)\)=0
<=> \(xyz\left(x+y+z\right)=yz+xy+xz\)
<=>\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)( chia cả hai vế cho xyz với x,y,z khác 0)
ta có đăng thức a2 +ab+bc+ca=(a+b)(a+c)
theo đề suy ra a^2 +1=(a+b)(a+c)
khúc này bạn tự làm típ
suy ra biểu thức trên bằng a(b+c)+b(a+c)+c(a+b)
=2(ab+ac+bc)=2
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
vt sai đề nâk
từ gt=> xy+yz+xz=0
áp dụng bdt bunhia
=> A>=0
dấu= xr khi x=y=z
-> dấu = k xr
..........
hoặc:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{\Rightarrow1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)