K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

đặt đk 

rồi bphuong 2 vế lên nha

c2: đặt x+5=t

thay vào pt

biểu diễn theo t

hok tốt

9 tháng 12 2019

ĐKXĐ:\(x\ge-5\)

Đặt \(\sqrt{x+5}=t\ge0\Rightarrow x+5=t^2\)

Ta có hệ: \(\hept{\begin{cases}x^2-4x-3=t\\x+5=t^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=t+7\\x-2=t^2-7\end{cases}}\)

Lấy pt trên cộng pt dưới, vế với vế:

\(\left(x-2\right)^2+\left(x-2\right)=t^2+t\)

\(\Leftrightarrow\left(x-t-2\right)\left(t+x-1\right)=0\)

...

P/s:Em ko chắc

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

21 tháng 3 2021

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

Đặt a\(=\sqrt{4x+1};b=\sqrt{3x-2}\left(a\ge\sqrt{\dfrac{11}{3}};b\ge0\right)\)

\(\Rightarrow a^2-b^2=x+3\)

\(\Rightarrow5a=5b+a^2-b^2\Leftrightarrow5\left(a-b\right)+\left(a-b\right)\left(a+b\right)=0\Leftrightarrow\left(a-b\right)\left(a+b+5\right)=0\Leftrightarrow a-b=0\) vì \(a+b+5\ge\sqrt{\dfrac{11}{3}}+5>0\)

\(\Leftrightarrow a=b\Leftrightarrow\sqrt{4x+1}=\sqrt{3x-2}\Rightarrow4x+1=3x-2\Leftrightarrow x=-3\) (L)

Vậy pt vô nghiệm

NV
22 tháng 3 2021

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x+1}=a>0\\\sqrt{3x-2}=b\ge0\end{matrix}\right.\) ta được:

\(5a=5b+a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=\sqrt{3x-2}\\\sqrt{4x+1}+\sqrt{3x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(ktm\right)\\\sqrt{4x+1}-3+\sqrt{3x-2}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)=0\)

\(\Leftrightarrow x=2\)

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

a: Ta có: \(\sqrt{4x^2+4x+3}=8\)

\(\Leftrightarrow4x^2+4x+1+2-64=0\)

\(\Leftrightarrow4x^2+4x-61=0\)

\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)

 

14 tháng 8 2021

VP bạn bình phương sao vế trái bạn không bình phương ạ! 

AH
Akai Haruma
Giáo viên
28 tháng 7 2021

Lời giải:

Đặt $\sqrt[3]{x^2+3x-5}=a; \sqrt[3]{x+2}=b$. Khi đó pt đã cho tương đương với:

$a+b=\sqrt[3]{a^3+b^3-1}+1$

$\Leftrightarrow a+b-1=\sqrt[3]{a^3+b^3-1}$

$\Leftrightarrow (a+b-1)^3=a^3+b^3-1$

$\Leftrightarrow (a+b)^3-3(a+b)^2+3(a+b)-1=a^3+b^3-1$

$\Leftrightarrow 3ab(a+b)-3(a+b)^2+3(a+b)=0$

$\Leftrightarrow ab(a+b)-(a+b)^2+(a+b)=0$

$\Leftrightarrow (a+b)(ab-a-b+1)=0$

$\Leftrightarrow (a+b)(a-1)(b-1)=0$

Nếu $a+b=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=-\sqrt[3]{x+2}$

$\Leftrightarrow x^2+3x-5=-(x+2)$

$\Leftrightarrow x^2+4x-3=0$

$\Leftrightarrow x=-2\pm \sqrt{7}$

Nếu $a-1=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=1$

$\Leftrightarrow x^2+3x-6=0$

$\Leftrightarrow x=\frac{-3\pm \sqrt{33}}{2}$

Nếu $b-1=0\Leftrightarrow \sqrt[3]{x+2}=1$

$\Leftrightarrow x=-1$

 

9 tháng 9 2023

\(\dfrac{4}{\sqrt{5}-3}-\dfrac{4}{\sqrt{5}+3}\\ =\dfrac{4\left(\sqrt{5}+3\right)}{5-9}-\dfrac{4\left(\sqrt{5}-3\right)}{5-9}\\ =\dfrac{4\left(\sqrt{5}+3\right)}{-4}-\dfrac{4\left(\sqrt{5}-3\right)}{-4}\\ =-\left(\sqrt{5}+3\right)+\sqrt{5}-3\\ =-\sqrt{5}-3+\sqrt{5}-3\\ =-6\)

 

ĐK: \(x\ge5;x\le1\)

PT trở thành:

\(\sqrt{4}.\sqrt{x-5}-\dfrac{3\sqrt{x-5}}{3}=\sqrt{1-x}\\ \Leftrightarrow2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\\ \Leftrightarrow\sqrt{x-5}=\sqrt{1-x}\\ \Leftrightarrow x-5=1-x\\ \Leftrightarrow x-5-1+x=0\\ \Leftrightarrow2x-6=0\\ \Leftrightarrow x=3\left(loại\right)\)

Vậy PT vô nghiệm.

`HaNa♬D`

a: \(=\dfrac{4\left(\sqrt{5}+3\right)-4\left(\sqrt{5}-3\right)}{5-9}=\dfrac{4\left(\sqrt{5}+3-\sqrt{5}+3\right)}{-4}=-6\)

b: ĐKXĐ: x-5>=0 và 1-x<=0

=>x>=5 và x<=1

=>Không có x thỏa mãn ĐKXĐ

=>PT vô nghiệm

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)