K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Kẻ đg cao BH

a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)

+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)

\(=\frac{bc\cdot sinA}{2}\)

b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)

\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)

+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)

Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

@Akai Haruma @Nguyễn Việt Lâm @Nguyễn Việt Lâm @Lightning Farron giúp em

17 tháng 8 2020

Xem định lý sin

15 tháng 9 2016

A B C H K M

Ta có : \(Sin\frac{A}{2}=Sin\widehat{BAM}=Sin\widehat{CAM}=\frac{BH}{AB}=\frac{CK}{CA}\)

\(\Rightarrow sin\frac{A}{2}=\frac{BH}{b}=\frac{CK}{c}\Rightarrow sin^2\frac{A}{2}=\frac{BH.CK}{bc}\)

Lại có : \(BH\le BM;CK\le CM\) 

\(\Rightarrow sin^2\frac{A}{2}\le\frac{BM.CM}{bc}\le\frac{\frac{\left(BM+CM\right)^2}{4}}{bc}=\frac{\frac{BC^2}{4}}{bc}=\frac{a^2}{4bc}\)

\(\Rightarrow sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\) (đpcm)