K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

loading...  loading...  

9 tháng 2 2020

\(2x+14+2⋮x+7\)

\(\Rightarrow2\left(x+7\right)+2⋮x+7\)

\(\Rightarrow2⋮x+7\)

\(\Rightarrow x+7\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-9;-8;-6;-5\right\}\)

Kết hợp vs điều kiện x nguyên ta đc \(x\in\left\{-9;-8;-6;-5\right\}\) thỏa mãn đề bài

@@ Học tốt @@

## Chiyuki Fujito

30 tháng 5 2017

2.

\(x^2-2x-11-y^2\)

\(\Leftrightarrow\left(x-2\right)x-y^2-11\)

\(\Leftrightarrow\left(x-1\right)^2-y^2-12\)

\(\Leftrightarrow y=-\sqrt{x^2-2x-11}\)

\(\Leftrightarrow y=\sqrt{x^2-2x-11}\)

\(x=4\left(y^2+12\right)\)

\(\Rightarrow x=-3;y=⊥2\)

\(x=5;y=⊥2\)\(\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2 tháng 1 2017

140 ; 150 ; 160 ; 170

k mk nha mk nhanh nhất

2 tháng 1 2017

Các giá trị chia hết cho 2 và 5 có số tận cùng là : 0

vậy các giá trị đó là :

  140 ; 150 ; 160 ; 170

k mik nha bn

thank you very much