giúp mình zới m.n
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉ mình cách giải với
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Lời giải đã được đăng ở đấy, post lại ở đây cho bạn dễ tìm
Để giải bài toán này đầu tiên ta có một nhận xét: Với mọi số dương \(x>0\) thì \(2x^3\ge3x^2-1.\) Thực vậy xét hiệu hai vế ta có \(2x^3-3x^2+1=\left(x-1\right)^2\left(2x+1\right)\ge0.\)
Bây giờ, gọi \(D,E,F\) là chân các đường cao kẻ từ \(A,B,C\). Theo hệ thức lượng trong tam giác vuông (liên hệ giữa cạnh và hình chiếu) ta có: Đối với tam giác vuông \(\Delta A'BC\) và đường cao \(A'D\) thì \(\frac{A'B^2}{A'C^2}=\frac{DB}{DC}\). Tương tự ta cũng có \(\frac{B'C^2}{B'A^2}=\frac{EC}{EA},\frac{C'A^2}{C'B^2}=\frac{FA}{FB}.\) Suy ra \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}=\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\)
Vì ba đường cao đồng quy nên theo định lý Ceva \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\). Do đó theo bất đẳng thức Cô-Si ta được
\(\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\ge3\sqrt[3]{\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}}=3.\) Vì vậy mà \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\ge3.\)
Từ đó áp dụng Nhận xét ta thu được \(2\left(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\right)\ge3\left(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\right)-3\ge3\cdot3-3=6.\)
Vì vậy ta được \(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\ge3.\)
Dấu bằng xảy ra khi và chỉ khi D,E,F là trung điểm ba cạnh AB,BC,CA và điều đó có nghĩa là tam giác ABC đều.
Nhớ thanks nhé!