K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

7 tháng 12 2017

ĐIều kiện x >2/3

\(\Leftrightarrow\frac{x^2+\left(\sqrt{3x-2}\right)^2}{x\sqrt{3x-2}}=2\)

\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2=2x\sqrt{3x-2}\)

\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2-2x\sqrt{3x-2}=0\)

\(\Leftrightarrow\left(x-\sqrt{3x-2}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{3x-2}=0\Leftrightarrow x=\sqrt{3x-2}\)

vì ta bình phương 2 vế ta có:

x= 3x-2

,<=> x2-3x+2 = 0

ta có x1= 1 (thỏa mãn) ; x2 = 2 (thỏa mãn)

Vậy:......................................

24 tháng 10 2017

Áp dụng bđt Côsi

16 tháng 6 2017

mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu

9 tháng 11 2016

\(ĐK:x\ne0v̀ax>\frac{2}{3}\)

đặt \(t=\frac{x}{\sqrt{3x-2}}\Rightarrow\frac{1}{t}=\frac{\sqrt{3x-2}}{x}\)

\(pt\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1\Leftrightarrow t=1\)

\(\Leftrightarrow\frac{x}{\sqrt{3x-2}}=1\Leftrightarrow\sqrt{3x-2}=x\Leftrightarrow x^2=3x-2\left(vi.x>\frac{2}{3}\right)\)

\(\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(t.m\right)\\x=2\left(t.m\right)\end{array}\right.\)

9 tháng 11 2016

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}=2\)

Đk:\(\sqrt{3x-2}\ge0\Rightarrow3x-2\ge0\Rightarrow x\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{x^2}{x\sqrt{3x-2}}+\frac{3x-2}{x\sqrt{3x-2}}-\frac{2\left(x\sqrt{3x-2}\right)}{x\sqrt{3x-2}}=0\)

\(\Leftrightarrow\frac{x^2+3x-2-2\left(x\sqrt{3x-2}\right)}{x\sqrt{3x-2}}=0\)

\(\Leftrightarrow x^2+3x-2-2\left(x\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow x^2+3x-2=2x\sqrt{3x-2}\)

\(\Leftrightarrow\left(x^2+3x-2\right)^2=\left(2x\right)^2\sqrt{\left(3x-2\right)^2}\)

\(\Leftrightarrow x^4+6x^3+5x^2-12x+4=4x^2\left(3x-2\right)\)

\(\Leftrightarrow x^4+6x^3+5x^2-12x+4=12x^3-8x^2\)

\(\Leftrightarrow x^4-6x^3+13x^2-12x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-2\right)^2=0\\\left(x-1\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=1\end{array}\right.\)(thỏa mãn)

Vậy pt có nghiệm là \(\left[\begin{array}{nghiempt}x=2\\x=1\end{array}\right.\)

 

 

31 tháng 10 2020

Khi đó phương trình đã cho tương đương với: \(4\left(\sqrt{x+2}-2\right)+\left(\sqrt{22-3x}-4\right)=x^2-4\)

\(\Leftrightarrow\frac{4\left(x-2\right)}{\sqrt{x+2}-2}+\frac{3\left(2-x\right)}{\sqrt{22-3x}+4}=\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}=0\end{cases}\left(1\right)}\)

Xét hàm số f(x)=\(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\left(-2\le x\le\frac{10}{3}\right)\)

Ta có \(f'\left(x\right)=1+\frac{2}{\sqrt{x+2}+\left(\sqrt{x+2}-2\right)}+\frac{9}{\sqrt{22-3x}\left(\sqrt{22-3x}+4\right)}>0\)với mọi \(x\in\left(-2;\frac{22}{3}\right)\)Do đó hàm f(x) đồng biến trên \(x\in\left[-2;\frac{22}{3}\right]\)

Mặt khác ta thấy f(-1)=0 nên x=-1 là nghiệm duy nhất của phương trình (1)

Vậy x=2;x=-1 là nghiệm của phương trình