K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

\(\sqrt{3x+7}-\sqrt{x-1}=3\)

Đkxđ:\(\left\{{}\begin{matrix}3x+7\ge0\\x+1\ge0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}x\ge-\frac{7}{3}\\x\ge-1\end{matrix}\right.\rightarrow x\ge-1\)

\(PT\rightarrow\sqrt{3x+7}=2+\sqrt{x+1}\)

\(\Rightarrow3x+7=\left(2+\sqrt{x+1}\right)^2\)

\(\Rightarrow3x+7=4+4\sqrt{x+1}+x+1\)

\(\Rightarrow2x+2=4\sqrt{x+1}\)

\(\Rightarrow x+1=2\sqrt{x+1}\)

\(\Rightarrow x^2+2x+1=4\left(x+1\right)\)

\(\Rightarrow x^2-2x-3=0\)

\(\Rightarrow x^2-3x+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

Vậy ....

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:
ĐKXĐ: $x\geq 5$

$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si

$\Leftrightarrow 2x^2-9x-2\leq 0$

$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$

Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$

Vậy pt vô nghiệm nên không có đáp án nào đúng.

1 tháng 12 2021

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

NV
6 tháng 2 2021

Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:

TH1: \(x=y\)

\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)

\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)

\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)

TH2: \(x=4y+3\)

Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)

13 tháng 2 2021

Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@

 

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được

19 tháng 9 2020

ăn lồn đê

19 tháng 9 2020

Đúng làm trẻ trâu , ăn nói mất lịch sự

4 tháng 2 2017

\(\sqrt{2x-1}=x^2-x-\left(2x-1\right)\)

\(\left(2x-1\right)+\sqrt{2x-1}+\frac{1}{4}=x^2-x+\frac{1}{4}\)

\(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\) tự làm được rồi

\(\sqrt{3x^2+33}+3\sqrt{x}=2x+7\)(ĐKXĐ: x>=0)

=>\(\sqrt{3x^2+33}-6+3\sqrt{x}-3=2x-2\)

=>\(\dfrac{3x^2+33-36}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)=2\left(x-1\right)\)

=>\(\dfrac{3x^2-3}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)-2\left(x-1\right)=0\)

=>\(\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+1\right)}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)

=>\(\left(\sqrt{x}-1\right)\left(\dfrac{3\left(\sqrt{x}+1\right)\left(x+1\right)}{\sqrt{3x^2+33}+6}+3-2\left(\sqrt{x}+1\right)\right)=0\)

=>\(\sqrt{x}-1=0\)

=>x=1(nhận)