\(\sqrt{3x^2-4x+1}=1-4x\)
rảnh nên đăng thui......^^ ai làm thì làm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cs vẻ bn đx qw rảnh rỗi òi -,-
4x2 + 4x + 1 = 0
( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = -1/2
Hok tốt
đặt \(\sqrt{3x-2}=a\) và \(\sqrt{x-1}=b\)=> \(\sqrt{3x^2-5x+2}=ab\)
và \(4x=a^2+b^2+3\)
khi đó pt trên trở thành \(a+b=a^2+b^2+3+9+2ab\)
đặt a+b=t thì pt trên trở thành \(t=12+t^2\)
<=> \(t^2-t+12=0\)
đến đây vô nghiệm rùi nên cả pt vô nghiệm
nk bạn mk nghĩ cái căn đầu tiên phải là \(\sqrt{3x-2}\) chứ
7: Ta có: \(\left(3x+4\right)\left(2x-1\right)+6x\left(1-x\right)=0\)
\(\Leftrightarrow6x^2-3x+8x-4+6x-6x^2=0\)
\(\Leftrightarrow11x=4\)
hay \(x=\dfrac{4}{11}\)
8: Ta có: \(2x\left(x^2-1\right)+x\left(-2x^2-3x+1\right)=-x-27\)
\(\Leftrightarrow2x^3-2x-2x^3-3x^2+x+x+27=0\)
\(\Leftrightarrow x^2=9\)
hay \(x\in\left\{3;-3\right\}\)
Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...\)\(>\frac{1}{\sqrt{n}}\)
Suy ra \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\)\(\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\)\(+...+\frac{1}{\sqrt{n}}=n.\frac{1}{\sqrt{n}}=\sqrt{n}\)
a)√x−2+12√4x−8=√9x−18−2
=>√x−2+12√4(x−2)=√9(x−2)−2
=>√x−2+12√22(x−2)=√32(x−2)−2
=>√x−2+12.2√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)-3√(x−2)=-2
=>√x−2(1+24-3)=-2
=>22√x−2=-2
=>√x−2=-2/22
=>√x−2=-1/11
=>x−2=1/121
=>x=1/121+2=243/121
b)√(3x−1)2=5
=>|3x−1|=5
=>3x−1=5 hoặc 3x−1=-5
=>3x=6 hoặc 3x=-4
=>x=2 hoặc x=-4/3
ĐKXĐ: \(\left\{{}\begin{matrix}2x+5>=0\\4-2x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x>=-5\\2x< =4\end{matrix}\right.\Leftrightarrow-\dfrac{5}{2}< =x< =2\)
\(x^2+\sqrt{2x+5}+\sqrt{4-2x}=4x-1\)
=>\(x^2-4+\sqrt{2x+5}-3+\sqrt{4-2x}=4x-1-7\)
=>\(\left(x-2\right)\left(x+2\right)+\dfrac{2x+5-9}{\sqrt{2x+5}+3}+\sqrt{4-2x}=4x-8\)
=>\(\left(x-2\right)\left[\left(x+2\right)+\dfrac{2}{\sqrt{2x+5}+3}-4\right]+\sqrt{4-2x}=0\)
=>\(-\left(2-x\right)\left[\left(x-2\right)+\dfrac{2}{\sqrt{2x+5}+3}\right]+\sqrt{2\left(2-x\right)}=0\)
=>\(\sqrt{2-x}\left[-\sqrt{2-x}\left(x-2+\dfrac{2}{\sqrt{2x+5}+3}\right)+\sqrt{2}\right]=0\)
=>\(\sqrt{2-x}=0\)
=>x=2(nhận)
Bài này sử dụng tính chất cơ bản: \(\left|A\right|\pm A\ge0\) với mọi A
a.
\(A=\left|-x-3\right|+\left|4x+1\right|+\left|3x+5\right|+5x+2\)
\(A\ge\left|3x-2\right|+\left|3x+5\right|+5x+2=\left|3x-2\right|+\dfrac{3}{2}.\left|2x+\dfrac{10}{3}\right|+5x+2\)
\(A\ge\left|3x-2\right|+\left|2x+\dfrac{10}{3}\right|+\dfrac{1}{2}\left|2x+\dfrac{10}{3}\right|+5x+2\)
\(A\ge\left|5x+\dfrac{4}{3}\right|+5x+\dfrac{4}{3}+\dfrac{1}{2}\left|2x+\dfrac{10}{3}\right|+\dfrac{2}{3}\ge\dfrac{2}{3}\)
\(A_{min}=\dfrac{2}{3}\) khi \(2x+\dfrac{10}{3}=0\Rightarrow x=-\dfrac{5}{3}\)
b. Tương tự
\(B\ge\left|5x+7\right|+\left|x+\dfrac{5}{4}\right|+3\left|x+\dfrac{5}{4}\right|-6x+5\)
\(B\ge\left|6x+\dfrac{33}{4}\right|-\left(6x+\dfrac{33}{4}\right)+3\left|x+\dfrac{5}{4}\right|+\dfrac{53}{4}\ge\dfrac{53}{4}\)
\(B_{min}=\dfrac{53}{4}\) khi \(x=-\dfrac{5}{4}\)
Lời giải:
a. Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
\(A=|-x-3|+|4x+1|+|3x+5|+5x+2\)
\(\geq |-x-3+4x+1|+|3x+5|+5x+2=|3x-2|+|3x+5|+5x+2\)
Nếu $x\geq \frac{2}{3}$ thì:
$A\geq 3x-2+3x+5+5x+2=11x+5\geq 11.\frac{2}{3}+5=\frac{37}{3}$
Nếu $\frac{-5}{3}\leq x< \frac{2}{3}$ thì:
$A\geq 2-3x+3x+5+5x+2=9+5x\geq 9+5.\frac{-5}{3}=\frac{2}{3}$
Nếu $x< \frac{-5}{3}$ thì:
$A\geq 2-3x-3x-5+5x+2=-1-x>\frac{2}{3}$
Từ 3 TH trên suy ra $A_{\min}=\frac{2}{3}$ khi $x=\frac{-5}{3}$
tìm ĐKXĐ rồi bình phương 2 vế
eassy mâk, dễ nhất trong all bài từ trc đến h đso