K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

2 tháng 1 2021

mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không

 

NV
26 tháng 3 2022

\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)

\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)

\(P_{min}=4\) khi \(x=y=1\)

18 tháng 12 2019

Ta co:

\(x+3y\ge6\Rightarrow y\ge2-\frac{x}{3}\)

\(\Rightarrow P\ge\frac{2}{3}x+\frac{6}{x}+2013\ge2\sqrt{\frac{2}{3}x.\frac{6}{x}}+2013=2017\)

Dau '=' xay ra khi \(x=3;y=1\)

6 tháng 4 2017

\(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)

\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)

Ta có :

\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2.\frac{2}{x^2}}=2\sqrt{2.2}=4\) (BĐT AM - GM)

Dấu "=" xảy ra <=> \(2x^2=\frac{2}{x^2}\Rightarrow x=1\)

\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2.\frac{3}{y^2}}=2\sqrt{3.3}=6\) (BĐT AM - GM)

Dấu "=" xảy ra <=> \(3y^2=\frac{3}{y^2}\Rightarrow y=1\)

\(\Rightarrow Q=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)

Dấu "=" xảy ra <=> x = y = 1

Vậỵ GTNN của Q là 19 tại x = y = 1

29 tháng 3 2018

ĐK:

Ta có

log 3 1 - y x + 3 x y = 3 x y + x + 3 y - 4

Xét hàm số f ( x ) = log 3 t + 3 t t > 0

có f ' ( t ) = 1 t ln 3 + 3 > 0 ; ∀ t > 0  nên hàm số đồng biến trên 0 ; + ∞

Kết hợp (*) suy ra

Xét P = x + y ⇒ x = P - y  thay vào (**) ta được

Ta tìm giá trị nhỏ nhất của g ( y ) = 3 y 2 - 2 y + 3 3 y + 1  trên (0;1)

Ta có

Giải phương trình

Lại có g ' ( y ) < 0 ∀ y ∈ 0 ; - 1 + 2 3 3

g ' ( y ) > 0 ∀ y ∈ - 1 + 2 3 3 ; 1

Hay g'(y) đổi dấu từ âm sang dương tại y = - 1 + 2 3 3  nên

⇒ P m i n = 4 3 - 4 3

Chọn đáp án A.