Cho đường tròn (O;R) có đkính AB. Gọi H là trung điểm OA. Dây CD vuông góc với OA tại H
a) Cm: tam giác OAC là tam giác đều
b) từ điểm I ngoài đường tròn vẽ 2 tiếp tuyến IC,ID.Cm: A là trung điểm của IO
c) CM: CD^2= 4HA.HB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg OAC có
H là trung điểm của AO (đề bài)
CH vuông góc AO (đề bài)
=> CH vừa là đường cao vừa là đường trung trực của tg OAC => tg OAC cân tại C => CA=CO (1)
CO=AO (bán kính (o)) (2)
Từ (1) Và (2) => CA=CO=AO => tg OCA là tg đều
b/
C/m tương tự câu a ta cũng có DO=DA=AO
=> CA=DA => tg ACD là tg cân tại A
Mà AH vuông góc CD (đề bài)
=> AH là đường cao => AH cũng là đường trung trực của tg ACD => CH=CD/2
Xét tg ACB có ^ACB = 90 (góc nt chắn nửa đường tròn)
=> tg ACB là tg vuông tại C
=\(\Rightarrow CH^2=HA.HB=\left(\frac{CD}{2}\right)^2=\frac{CD^2}{4}\Rightarrow CD^2=4.HA.HB\)