K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề, ta có:

-b/2=2 và 0+0+c=6

=>c=6 và b=-4

23 tháng 10 2021

Bài 1: 

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}-4a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=3\end{matrix}\right.\)

4 tháng 11 2021

Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)

Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)

Vậy \(\left(P\right):y=2x^2-x+3\)

 

4 tháng 11 2021

DẠ CẢM ƠN NHIỀU Ạ !!!

Gọi công thức của hàm số bậc hai là \(y=ax^2+bx+c\)

Trục đối xứng là x=3 nên \(-\dfrac{b}{2a}=3\)

=>b=-2a

Thay x=0 và y=-16 vào (d), ta được:

\(a\cdot0^2+b\cdot0+c=-16\)

=>c=-16

=>\(y=ax^2+bx-16\)

Thay x=-2 và y=0 vào (d), ta được:

\(a\cdot\left(-2\right)^2+b\left(-2\right)-16=0\)

=>4a-2b-16=0

=>\(4a-2\cdot\left(-2a\right)=16\)

=>8a=16

=>a=2

=>b=-2a=-4

Vậy: Công thức cần tìm là \(y=2x^2-4x-16\)

9 tháng 12 2021

Đồ thì hàm số \(y=2x+2m+2\) cắt trục tung tại điểm có tung độ bằng \(4\)

Nên đồ thị hàm số \(y=2x+2m+2\in\left(0;4\right)\)

Thay \(x=0;y=4\) vào \(y=2x+2m+2\) ta có:

\(2.0+2m+2=4\)

\(\Leftrightarrow2m=2\)

\(\Leftrightarrow m=1\)

16 tháng 12 2023

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)