K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H. a. Cm CH//MB b. Cm BC vuông góc với AM và MA.MC=MB2 c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O) d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị lớn...
Đọc tiếp

1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H.

a. Cm CH//MB

b. Cm BC vuông góc với AM và MA.MC=MB2

c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O)

d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị lớn nhất.

2.Cho đường tròn tâm O đường kính AB=2R.Từ trung điểm H của đoạn OB kẻ đường thẳng vuông góc với AB cắtđường tròn tâm O tại C và D.

a. Chứng minh HC=HD và tứ giác ODBC là hình thoi.

b. Tính số đo góc BOC.

c. Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O).Tính MC theo R.

d. Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh: HI.HD+HB.HM=R2

0

a) Xét tứ giác MKCH có 

\(\widehat{MKC}=\widehat{MHC}\left(=90^0\right)\)

\(\widehat{MKC}\) và \(\widehat{MHC}\) là hai góc cùng nhìn cạnh MC

Do đó: MKCH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

17 tháng 5 2021

đề lằng nhằng:dựng cái gì vuông góc với AC??

9 tháng 7 2018

A B O H C M d K I

c) Theo câu b: MC là tiếp tuyến của đường tròn (O), MB cũng là tiếp tuyến từ M đến (O)

=> MB = MC => \(\Delta\)BMC cân tại M. Ta có: MO là phân giác ^BMC 

=> MO cũng là đường trung trực của BC. Mà I thuộc MO => IB=IC (1)

Dễ có H là trung điểm của BC => HC=HB

CI vuông góc d; BO vuông góc d => CI // BO => ^HCI = ^HBO

Xét \(\Delta\)CHI & \(\Delta\)BHO: ^HCI = ^HBO; HC=HB; ^CHI = ^BHO (Đối đỉnh)

=> \(\Delta\)CHI = \(\Delta\)BHO (g.c.g) => IC = OB (2)

Từ (1) và (2) => IB = OB = R => Khoảng cách từ I đến B không đổi và luôn bằng R

Vậy khi M thay đổi trên d thì điểm I luôn thuộc đường tròn (B;R) cố định.

25 tháng 12 2014

trên CD lấy điểm N, kẻ MN vuông góc với CD

=> 2 tam giac vuông MBC=MNC

=> 2tam giác MAD=MND

=> MB=MN=MA = R

vậy CD là tiếp tuyến đường tròn tâm  M

 

25 tháng 12 2017

O A B C H D E K F

a) Do AB và AC là các tiếp tuyến cắt nhau tại A nên áp dụng tính chất hai tiếp tuyến cắt nhau ta có: AB = AC và AH là phân giác góc BAC.

Xét tam giác cân ABC có AH là phân giác nên AH đồng thời là đường cao. Vậy thì AO vuông góc với BC tại H.

b) Xét tam giác AEC và ACD có : 

\(\widehat{A}\) chung

\(\widehat{ACE}=\widehat{ACD}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)

\(\Rightarrow\Delta AEC\sim\Delta ACD\left(g-g\right)\)

\(\Rightarrow\frac{AE}{AC}=\frac{AC}{AD}\Rightarrow AE.AD=AC^2\)

Xét tam giác vuông ACD, đường cao CH, ta có :

\(AH.AO=AC^2\)  (Hệ thức lượng)

Vậy nên ta có : AE.AD = AH.AO

c) Xét tam giác vuông ABO, đường cao BH, ta có: AH.AO = BO2

Do BO = DO nên AH.AO = OD2

Lại có \(\Delta AKO\sim\Delta FHO\left(g-g\right)\Rightarrow\frac{AO}{FO}=\frac{OK}{OH}\Rightarrow OK.OF=AO.OH\)

Vậy nên OK.OF = OD2 hay \(\frac{OK}{OD}=\frac{OD}{OF}\)

Vậy nên \(\Delta OKD\sim\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{FDO}=\widehat{DKO}=90^o\)

Vậy nên FD là tiếp tuyến của đường tròn (O).