Cho \(\Delta\)ABC có AB < AC. Gọi M là trung điểm của của BC. Trên tia đối của tia MA lấy điểm E sao cho AM = ME.
a) Chứng minh: \(\Delta\)AMB = \(\Delta\)EMC
b) Chứng minh: AB // EC
c) Vẽ các điểm D, F sao cho B là trung điểm của AD, C là trung điểm của AF. Chứng minh \(\Delta\)BCE = \(\Delta\)FEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác EMC có :
AM = ME (gt)
góc AMB = góc EMC (hai góc đối đỉnh)
BM = MC (gt)
\(\Rightarrow\)\(\Delta AMB=\Delta EMC\)(c-g-c)
b,xét tam giác BME và tam giác CMA có :
BM = MC (gt)
AM = ME (gt)
góc AMB = góc CME (hai góc đối đỉnh )
\(\Rightarrow\Delta BME=\Delta CMA\)(c-g-c)
\(\Rightarrow\widehat{ACM}=\widehat{BME}\)(hai góc tương ứng)
\(\Rightarrow AC\)// BE(đpcm)
c,xét tam giác ABC và tam giác ECB có :
AM = ME (gt)
BC là cạnh chung
góc ACB = góc CBE (cmt)
\(\Rightarrow\Delta ABC=\Delta ECB\)(c-g-c)
\(\Rightarrow\widehat{BAC}=\widehat{BEC}=90^0\) (hai góc tương ứng)
\(\Rightarrow\Delta BEC\)vuông tại E
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) ΔABM = ΔECM
Xét ΔABM và ΔECM có
MB = MC (do AM là trung tuyến)
∠ AMB = ∠ EMC (đối đỉnh)
MA = ME (gt) ⇒ ΔABM = ΔECM (c – g – c)
b) AC > EC
Ta có: ΔABC vuông tại B ⇒ AC > AB
Mà AB = EC (do ΔABM = ΔECM) ⇒ AC > EC
c) ∠BAM = ∠CAM
Ta có: AC > EC ⇒ ∠CEM = ∠CAM mà ∠CEM = ∠BAM
⇒ ∠BAM = ∠CAM
d) Tính AB = ?
Ta có: BM = ½ BC (t/c đường trung tuyến) ⇒ BM = 12dm
Trong vuông ABM có:
a) Xét ΔABM và ΔECM có:
MB = MC (do AM là trung tuyến)
∠ AMB = ∠ EMC (đối đỉnh)
MA = ME (gt) ⇒ ΔABM = ΔECM (c – g – c)
b) Ta có: ΔABC vuông tại B ⇒ AC > AB
Mà AB = EC (vì ΔABM = ΔECM) ⇒ AC > EC
c)Ta có: AC > EC ⇒ ∠CEM = ∠CAM mà ∠CEM = ∠BAM
⇒ ∠BAM = ∠CAM
d) Ta có: BM = ½ BC (t/c đường trung tuyến) ⇒ BM = 12dm
Trong vuông ABM có:
Xét tam giác AMB và tam giác EMC có
BM = MC ( gt) ; AM = ME ( gt ) ; ^AMB = ^ EMC ( đ đ )
=> tam giác AMB = tam giác EMC ( c-g-c )
=> AB = CE
Xét tam giác vuông ABC có
AC là cạnh huyền AB; BC là 2 cgv
=> AC > AB
Mà AB = CE
=> AC > CE
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
a: Xét tứ giác AMBC có
E là trung điểm của AB
E là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM//BC
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
a: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC