Chia số 900 thành 3 phần tỉ lệ thuận với 1/3 ; 1/4 ; 1/6 . Tìm mỗi phần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 phần bị chia ra lần lượt là:x,y,z.
Ta có: x+y+z=900 và \(\frac{\frac{x}{1}}{3}=\frac{\frac{y}{1}}{4}=\frac{\frac{z}{1}}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{900}{\frac{9}{12}}=1200\)
\(\frac{x}{\frac{1}{3}}=\frac{1}{3}.1200=400\)
\(\frac{y}{\frac{1}{4}}=\frac{1}{4}.1200=300\)
\(\frac{z}{\frac{1}{6}}=\frac{1}{6}.1200=200\)
Vậy 3 phần bị chia ra lần lượt là: 400, 300,200
Gọi 3 phần là a,b,c
Ta có: \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{900}{\frac{3}{4}}=1200\)
=> \(\hept{\begin{cases}\frac{a}{\frac{1}{3}}=1200\\\frac{b}{\frac{1}{4}}=1200\\\frac{c}{\frac{1}{6}}=1200\end{cases}\Rightarrow\hept{\begin{cases}a=400\\b=300\\c=200\end{cases}}}\)
Vậy ba phần là 400,300 và 200
Giả sử số 900 được chia thành 3 phần a,b,c
=> a+b+c=900
Theo bài ra, ta có: \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
=>\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{900}{\frac{3}{4}}=1200\)
=> \(a=1200.\frac{1}{3}=400\)
\(b=1200.\frac{1}{4}=300\)
\(c=1200.\frac{1}{6}=200\)
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)
\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)
\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)
vậy 3 phần đó là:140, 105, 70
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
a phần 1/3=b phần 1/4=c phần 1/6 và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a phần 1/3=b phần 1/4=c / 1/6=a+b+c phần 1/3+1/4+1/6=315 phần 3/4=420
a phần 1/3=420⇒a=140
b phần 1/4=420⇒b=105
c phần 1/6=420⇒c=70
vậy............
đây là toán nâng cao lớp 7 đúng ko
Gọi 3 phần đó lần lượt là a, b, c
Có: a/2 = b/3; b/5 = c/7
=> a/10 = b/15 = c/21 và a + b + c = 92
áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a+b+c}{10+15+21}=\frac{92}{46}=2\)
suy ra: a/10 = 2 => a = 20
b/15 = 2 => b = 30
c/21 = 2 => c = 42
Gọi 3 phần được chia từ số 900 lần lượt là: a, b, c.
Theo đề bài, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và \(a+b+c=900.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{900}{\frac{3}{4}}=1200.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{\frac{1}{3}}=1200\Rightarrow a=1200.\frac{1}{3}=400\\\frac{b}{\frac{1}{4}}=1200\Rightarrow b=1200.\frac{1}{4}=300\\\frac{c}{\frac{1}{6}}=1200\Rightarrow c=1200.\frac{1}{6}=200\end{matrix}\right.\)
Vậy 3 phần đó lần lượt là: 400 ; 300 ; 200.
Chúc bạn học tốt!