K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

a) Gọi N là trung điểm của OC

Ta có: ΔOHC vuông tại H(CH⊥AB tại H)

mà HN là đường trung tuyến ứng với cạnh huyền OC(N là trung điểm của OC)

nên \(HN=\dfrac{OC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(ON=CN=\dfrac{OC}{2}\)(N là trung điểm của OC)

nên HN=ON=CN(1)

Ta có: ΔOCI vuông tại I(OI⊥AC tại I)

mà IN là đường trung tuyến ứng với cạnh huyền OC(N là trung điểm của OC)

nên \(IN=\dfrac{OC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CN=ON=\dfrac{CO}{2}\)(N là trung điểm của CO)

nên IN=CN=ON(2)

Từ (1) và (2) suy ra NI=NO=NC=NH

hay I,O,C,H cùng thuộc một đường tròn(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAO vuông tại A có AI là đường cao ứng với cạnh huyền OM, ta được:

\(OI\cdot OM=OA^2\)

mà OA=R(A∈(O;R))

nên \(OI\cdot OM=R^2\)(đpcm)

Vì OM=2R và R=6cm nên \(OM=2\cdot6cm=12cm\)

Thay OM=12cm và R=6cm vào biểu thức \(OI\cdot OM=R^2\), ta được:

\(OI\cdot12=6^2=36\)

hay OI=3cm

Vậy: Khi OM=2R và R=6cm thì OI=3cm

a: Xét tứ giác OACM có

\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)

=>OACM là tứ giác nội tiếp

=>O,A,C,M cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM

=>C nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OC là đường trung trực của AM

=>OC\(\perp\)AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)MB tại M

Ta có: AM\(\perp\)MB

AM\(\perp\)OC

Do đó: OC//MB

c: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

=>KB\(\perp\)KA tại K

=>AK\(\perp\)BC tại K

Xét ΔABC vuông tại A có AK là đường cao

nên \(BK\cdot BC=BA^2=\left(2R\right)^2=4R^2\)

4 tháng 12 2023

vẽ hình và làm bài trên

a: Xét tứ giác CHOM có

góc CHO+góc CMO=180 độ

nen CHOM là tứ giác nội tiếp

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C co CH là đường cao

nên CH*AB=CA*CB

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOBD và ΔOCD có 

OB=OC

OD chung

DB=DC

Do đó: ΔOBD=ΔOCD

Suy ra: \(\widehat{OBD}=\widehat{OCD}\)

\(\Leftrightarrow\widehat{OBD}=90^0\)

hay DB là tiếp tuyến có B là tiếp điểm của (O)

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có 

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC tại E

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOCD và ΔOBD có 

OC=OB

DC=DB

OD chung

Do đó: ΔOCD=ΔOBD

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

\(\Leftrightarrow\widehat{OCD}=90^0\)

hay DB là tiếp tuyến của (O)

b: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔABC có 

O là trung điểm của AB

E là trung điểm của BC

Do đó: OE là đường trung bình của ΔBAC

Suy ra: OE\(\perp\)CB

29 tháng 8 2021
a) Vẽ hình

a) Xét đường tròn (O) có AB  là đường kính và △ ABC nội tiếp đường tròn (O)

⇒ \(\widehat{ACB}=90^0\) hay △ ABC vuông tại C.

Có: OC = OB (do cùng bằng bán kính), suy ra O cách đều hai điểm C và B,

⇒  O nằm trên trung trực của BC.

Có EC = EB (do E là trung điểm của BC), suy ra E cách đều hai điểm B và C

⇒ E nằm trên trung trực của BC.

Ta có E và O  đều nằm trên đường trung trực của đoạn BC

⇒ OE là trung trực của đoạn BC.

 OE ⊥ BC (đpcm)

b)  Vì tiếp tuyến tại C của (O) cắt OE  ở D nên ta có D nằm trên EO, suy ra D nằm trên đường trung trực của BC ⇒ DB = DC (tính chất đường trung trực)

Xét ΔCOD và ΔBOD có:

OC = OB (do cùng là bán kính của đường tròn)

OD chung

DB = DC (cmt)

⇒ ΔCOD = ΔBOD ( c − c − c )

\(\widehat{OCD}=\widehat{OBD}=90^0\)

⇒  BD ⊥ OB

Suy ra DB  là tiếp tuyến của (O)  (đpcm).

c)Vì DB  là tiếp tuyến của (O) (cmt) 

  \(\widehat{OBD}=90^0\)       ⇒          \(\widehat{CBO}+\widehat{CBD}=90^0\)       \(\left(1\right)\)

Vì OD  là trung trực của BC (cmt) 

⇒ OD ⊥ BC ⇒ \(\widehat{DEB}=90^0\)\(\widehat{ODB}+\widehat{CBD}=90^0\)     \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\widehat{CBO}=\widehat{ODB}\) ( cùng phụ với \(\widehat{DBC}\) )

Xét △ ODB và △ CBH có:

\(\widehat{CHB}=\widehat{OBD}=90^0\)

\(\widehat{CBO}=\widehat{ODB}\) ( cmt )

△ ODB \(\approx\) △ CBH ( g − g )

\(\dfrac{OB}{CH}=\dfrac{OD}{BC}\)

⇒  OB .  BC = OD . CH

△ ODB ∼ △ CBH ( g − g )

Mà có OB = OC (do cùng là bán kính của đường tròn)

Suy ra: CB.OC=OD.HC (đpcm)

b: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Xét (O) có 

OE là một phần đường kính

CB là dây

E là trung điểm của CB

Do đó: OE\(\perp\)BC

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

EC=EB

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOCD và ΔOBD có 

OC=OB

OD chung

CD=BD

Do đó: ΔOCD=ΔOBD

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

mà \(\widehat{OCD}=90^0\)

nên \(\widehat{OBD}=90^0\)

hay DB\(\perp\)OB tại B

hay DB là tiếp tuyến của (O)