K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔMBO và ΔMAO có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔMBO=ΔMAO

Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)

hay MA là tiếp tuyến của (O)

2: Xét tứ giác AOBM có 

\(\widehat{MAO}+\widehat{MBO}=180^0\)

nên AOBM là tứ giác nội tiếp

29 tháng 10 2023

a: Xét tứ giác CAOD có

\(\widehat{CAO}+\widehat{CDO}=180^0\)

=>CAOD là tứ giác nội tiếp đường tròn đường kính CO

=>C,A,O,D cùng thuộc đường tròn đường kính CO

b: Xét (O) có

CA,CD là tiếp tuyến

=>CA=CD

mà OA=OD

nên OC là trung trực của AD

=>OC\(\perp\)AD(1)

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)DB(2)

Từ (1) và (2) suy ra OC//DB

c: Sửa đề: CMBO

Xét ΔCAO vuông tại A và ΔMOB vuông tại O có

AO=BO

\(\widehat{COA}=\widehat{MBO}\)(CO//BM)

Do đó: ΔCAO=ΔMOB

=>CO=MB

Xét tứ giác CMBO có

CO//BM

CO=BM

Do đó: CMBO là hình bình hành

29 tháng 10 2023

cho xem hình vẽ nữa

a: Đường thẳng tiếp xúc với đường tròn tại C cắt AD tại E

=>EC là tiếp tuyến tại C của đường tròn

=>EC\(\perp\)OC tại C

Xét tứ giác EAOC có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

nên EAOC là tứ giác nội tiếp

=>E,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=\left(2R\right)^2=4R^2\)

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

Ta có: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

c: ΔOBC cân tại O

mà OF là đường cao

nên OF là phân giác của góc BOC

OC\(\perp\)CE tại C

mà C\(\in\)EF

nên OC\(\perp\)CF tại C

Xét ΔOCF và ΔOBF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>BF là tiếp tuyến của (O;R)

a: Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

hay A,B,O,C cùng thuộc 1 đường tròn