K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Có BĐT sau:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\Leftrightarrow\left(x-y\right)^2\ge0\left(true!\right)\)

Ta có:

\(x^8+y^8\ge\frac{\left(x^4+y^4\right)^2}{2}\ge\frac{\left[\frac{\left(x^2+y^2\right)^2}{2}\right]^2}{2}\ge2\)

Dấu "=" xảy ra tại a=b=1

21 tháng 4 2018

Theo mình nó còn có x,y > 0 nữa nha !

Ta có:

\(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\)

Áp dụng BĐT Cosi ta có:

\(\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\sqrt{\left(x+y\right)^2\left(\dfrac{1+xy}{x+y}\right)^2}=2\left(1+xy\right)\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2\left(1+xy\right)-2xy\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2+2xy-2xy=2\)

\(\Rightarrow\)đpcm

24 tháng 11 2019

Nhẩm điểm rơi rồi xơi:)

\(\sqrt{1.x}+\sqrt{1\left(y-1\right)}+\sqrt{1\left(z-2\right)}\)]

\(\le\frac{x+1}{2}+\frac{1+y-1}{2}+\frac{1+z-2}{2}=\frac{x+y+z}{2}\)

Đẳng thức xảy ra khi x = 1; y = 2; z = 3

11 tháng 9 2017

chẳng hiểu

Nguyễn Huy Thắng chuyện gì thế (xem hộ hả)

?

(1) không phải thấy x,y >0 mà phải lập luận x,y>0 ;

hoặc ít nhất phải ghi dẽ dàng c/m được x,y <=0 vô nghiệm => x,y >0

11 tháng 9 2017

\(x;y=0\) nhỏ hơn 0

\(x=y=-1\) <2

\(x,y<-2\) thì \(2^x;4^y\) là phân số <32

x,y càng lớn thì \(2^x;4^y\) là phân số càng bé <32

13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do

14 tháng 1 2019

a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)

Cộng theo vế các bất phương trình trên ta có0:

 \(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi và chỉ khi x=y=z=1

b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)

Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)

12 tháng 7 2019

Em thử nhá, ko chắc đâu. Sai xin bỏ qua cho ạ.

Dễ thấy x, y đều khác 0. Đặt x - y = t khác 0 kết hết x > y suy ra t > 0 và x = t + y. Suy ra 1 =xy = y(t+y) = yt + y2 suy ra 2 = 2yt + 2y2

\(VT=\frac{t^2+2ty+2y^2}{t}=\frac{t^2+2}{t}=t+\frac{2}{t}\) với t > 0. Áp dụng BĐT Cô si ta được:

\(VT=t+\frac{2}{t}\ge2\sqrt{t.\frac{2}{t}}=2\sqrt{2}\) (đpcm)

Đẳng thức xảy ra khi \(t=\frac{2}{t}\Rightarrow t=\sqrt{2}\text{ và }\left(t+y\right)y=1\Leftrightarrow\left(\sqrt{2}+y\right)y=1\)

\(\Leftrightarrow y^2+\sqrt{2}y-1=0\Leftrightarrow y=\frac{\sqrt{6}-\sqrt{2}}{2}\text{ hoặc }y=\frac{-\sqrt{6}-\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{\sqrt{6}+\sqrt{2}}{2}\text{hoặc }x=\frac{-\sqrt{6}+\sqrt{2}}{2}\)

Do đó đẳng thức xảy ra khi \(\left(x;y\right)=\left\{\left(\frac{\sqrt{6}+\sqrt{2}}{2};\frac{\sqrt{6}-\sqrt{2}}{2}\right),\left(\frac{-\sqrt{6}+\sqrt{2}}{2};\frac{-\sqrt{6}-\sqrt{2}}{2}\right)\right\}\)

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

11 tháng 6 2018

\(\Leftrightarrow\frac{\left(x-y\right)^2+2xy}{x-y}\ge2\sqrt{2}\)

\(\Leftrightarrow\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{2}\)

mặt khác \(x>y\Rightarrow x-y>0\)

áp dụng BĐT CÔ-SI CHO hai số dương ta được \(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\frac{2}{x-y}}\ge2\sqrt{2}\)

dấu''='' xảy ra khi và chỉ khi \(\left(x-y\right)=\frac{2}{x-y}\)

11 tháng 6 2018

Trường hợp dấu băng xảy ra chưa rỗ, còn cần phải giải thêm