K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bạn tham khảo lời giải tại đây:

Câu hỏi của Gcaothu56677 - Toán lớp 8 | Học trực tuyến

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Lời giải:

a)

Từ ĐKĐB dễ thấy các tứ giác $ABID, ABCK$ là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI; AB=CK\Rightarrow DI=CK\)

\(\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

$AB\parallel DK\Rightarrow \frac{DE}{EB}=\frac{DK}{AB}$

$AB\parallel CI\Rightarrow \frac{IF}{FB}=\frac{CI}{AB}$

Mà $CI=DK$ (cmt)

$\Rightarrow \frac{DE}{EB}=\frac{IF}{FB}$. Theo định lý Ta-let đảo suy ra $EF\parallel CD$

b)

Từ các đường thẳng song song, và $DI=CK=AB$, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CD-CK}{AB}\)

\(=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\) (đpcm)

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Hình vẽ:

Ôn tập cuối năm phần hình học

9 tháng 6 2019

a.

Theo định lý Thales,ta có:

 \(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)

\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)

Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.

b.

Theo định lý Thales,ta có:

\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)

\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)

Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)

27 tháng 1 2016

ok con de

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html