a ) Tính \(A=\left(1-\frac{1}{1+2\:}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Nhanh lên nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4})...(1-\frac{1}{1+2+3+...+2006})\)
\(A=(1-\frac{1}{3})(1-\frac{1}{6})(1-\frac{1}{10})...(1-\frac{1}{2013021})\)
\(A=\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}....\frac{2013020}{2013021}\)
Sorry bạn máy tính mình có chút vấn đề để mk làm tiếp :
\(A=\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}....\cdot\frac{4026040}{4026042}\)
\(A=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\frac{3\cdot6}{4\cdot5}\cdot...\cdot\frac{2005\cdot2008}{2006\cdot2007}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2005}{2\cdot3\cdot4\cdot...\cdot2006}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2008}{3\cdot4\cdot5\cdot...\cdot2007}\)
\(A=\frac{1}{2006}\cdot\frac{2008}{3}=\frac{1004}{3009}\)
P/S : Hoq chắc :>
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)......\left(1-\frac{1}{1+2+3+...+2006}\right)\)
\(A=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)....\left(1-\frac{1}{2013021}\right)\)
\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}....\frac{2013020}{2013021}\)
\(A=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}......\frac{4026040}{4026042}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}......\frac{2005.2008}{2006.2007}\)
\(A=\frac{1.2.3.....2005}{2.3.4....2006}.\frac{4.5.6....2008}{3.4.5...2007}\)
\(A=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)
Ta có:
\(1-\frac{1}{1+2}=1-\frac{1}{2.3:2}=1-\frac{2}{6}=\frac{4}{6}=\frac{1.4}{2.3}\)
\(1-\frac{1}{1+2+3}=1-\frac{1}{3.4:2}=1-\frac{2}{12}=\frac{10}{12}=\frac{2.5}{3.4}\)
\(1-\frac{1}{1+2+3+4}=1-\frac{1}{4.5:2}=1-\frac{2}{20}=\frac{18}{20}=\frac{3.6}{4.5}...\)
\(1-\frac{1}{1+2+3+...+2006}=1-\frac{1}{2006.2007:2}=1-\frac{2}{2006.2007}=\frac{2005.2008}{2006.2007}\)
\(\Rightarrow1-\left(\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{2005.2008}{2006.2007}\)
\(=\frac{\left(1.2.3....2005\right).\left(4.5.6....2008\right)}{\left(2.3.4....2005\right).\left(3.4.5....2007\right)}=\frac{1}{2006}.\frac{2008}{3}=\frac{2008}{6018}\)