1.Cho hình bình hành ABCD.Từ B và D kẻ BM và DN vuông góc với AC
a,chứng minh tứ giác BMON là hình bình hành
b,Gọi O là trung điểm của MN. Chứng minh B,O,D thẳng hàng
c,Chứng minh tam giác BMC= tam giác DNA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔOHA=ΔOKC
=>OH=OK
=>O là trung điểm của HK
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra AE=CF: ED=FB
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
FB=ED
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác KBID có
KB//ID
KB=ID
Do đó: KBID là hình bình hành
Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF và DE=BF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
KB=ID
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác BKDI có
BK//ID
BK=ID
Do đó: BKDI là hình bình hành
Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
b: Ta có: AHCK là hình bình hành
nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của HK
nên O là trung điểm của AC
hay A,O,C thẳng hàng
a: Xét tứ giác ABMD có
O là trung điểm chung của AM và BD
=>ABMD là hình bình hành
b: ta có:ABMD là hình bình hành
=>AD//MB và AD=MB
Ta có: AD//MB
M\(\in\)BC
Do đó: AD//CM
Ta có: AD=MB
MC=MB
Do đó: AD=MC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCD có
AD//CM
AD=CM
Do đó:AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Ta có: AMCD là hình thoi
=>AC vuông góc với DM tại trung điểm của mỗi đường
=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM
Xét ΔABC có
N,K lần lượt là trung điểm của AB,AC
=>NK là đường trung bình của ΔABC
=>NK//BC
=>NK//MH
Xét ΔABC có
M,N lần lượt là trung điểm của BC,BA
=>MN là đường trung bình của ΔABC
=>MN//AC và \(MN=\dfrac{AC}{2}\)
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(HK=\dfrac{AC}{2}\)
=>MN=HK
Xét tứ giác MHNK có MH//NK và MN=HK
nên MHNK là hình thang cân
d:
Ta có: ΔHAC vuông tại H
mà HK là đường trung tuyến
nên \(KA=KH=KC=\dfrac{AC}{2}\)
Ta có: ΔHAB vuông tại H
mà HN là đường trung tuyến
nên \(HN=AN=NB=\dfrac{AB}{2}\)
Xét ΔKAN và ΔKHN có
KA=KH
AN=HN
KN chung
Do đó: ΔKAN=ΔKHN
=>\(\widehat{KAN}=\widehat{KHN}=90^0\)
a: Xét ΔAND vuông tại N và ΔCMB vuông tại M có
AD=BC
\(\widehat{DAN}=\widehat{BCM}\)
Do đó: ΔAND=ΔCMB
Suy ra: DN=BM
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành