K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Theo t/c tỉ lệ thức ta có :

\(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) (1)

Mặt khác : \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) (2)

Từ (1) và (2) => \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) (3)

Tương tự :

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\) (4)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\) (5)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\) (6)

Cộng vế với vế của (3),(4),(5),(6), ta có :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (đpcm)

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

NV
9 tháng 2 2020

Từ \(\frac{a}{b}< 1\Rightarrow a< b\)

\(\frac{a}{b}< \frac{a+c}{b+c}\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\Leftrightarrow ac< bc\Leftrightarrow a< b\) (đúng với giả thiết)

a/ Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\) ; \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

Cộng vế với vế:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+b+c}{a+b+c}=2\)

NV
9 tháng 2 2020

b/ \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) ; \(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\) ; \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Cộng vế với vế:

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

Mặt khác:

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) ; \(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}\) ...

Bạn tự làm nốt

c/ Hoàn toàn tương tự:

\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) làm tương tự 3 cái còn lại

Cộng lại sẽ ra BĐT bên trái

Sau đó \(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\) làm tương tự với 3 cái còn lại rồi cộng lại ra BĐT bên phải

29 tháng 11 2019

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

29 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

21 tháng 9 2016

25361

10 tháng 2 2018

a, Có : (a-b)^2 >= 0

<=> a^2+b^2-2ab >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :

a+b/ab >= 4/a+b

<=> 1/a+1/b >= 4/a+b

=> ĐPCM

Dấu "=" xảy ra <=> a=b>0

Tk mk nha

10 tháng 2 2018

Biến đổi tương đương 

<=> (a + b)/ab >/ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế 

<=> (a + b)2 >/ 4ab 

<=> a2 + 2ab + b2 >/ 4ab 

<=> a2 - 2ab + b2 >/ 0 

<=> (a - b)2 >/ 0 luôn đúng a,b > 0 

=>đpcm 

Dấu " = " xảy ra ⇔ a = b