K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Ta có \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{47}+\sqrt{48}}=\frac{1-\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+\frac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}-\sqrt{4}\right)\left(\sqrt{3}+\sqrt{4}\right)}\)

8 tháng 7 2019

Ta có:

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{47}+\sqrt{48}}\)

\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{47}-\sqrt{48}}{-1}\)

\(=\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{47}-\sqrt{48}}{-1}\)

\(=\frac{\sqrt{1}-\sqrt{48}}{-1}\)

\(=4\sqrt{3}-1\approx5,9>3\left(đpcm\right)\)

27 tháng 6 2019

Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\) (do \(\sqrt{n+1}-\sqrt{n}>0\forall n\in\mathbb{N}\text{ nên ta có thể nhân liên hợp}\))

Áp dụng vào và ta có:

\(VT=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2013^2}-\sqrt{2013^2-1}\)

\(=\sqrt{2013^2}-1=2013-1=2012^{\left(đpcm\right)}\)

7 tháng 1 2017

\(U\left(n\right)=\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}\)

\(U\left(n\right)=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n.\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(U\left(n\right)=\frac{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n}\sqrt{n+1}\right)^2}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(S_{u\left(n\right)}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=1-\frac{1}{5}< 1\)

AH
Akai Haruma
Giáo viên
3 tháng 5 2019

Lời giải:
Xét số hạng tổng quát \(\frac{1}{(n+1)\sqrt{n}}\):

\(\frac{1}{(n+1)\sqrt{n}}=\frac{(n+1)-n}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}.\sqrt{n(n+1)}}\)

\(< \frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\frac{\sqrt{n+1}+\sqrt{n}}{2}.\sqrt{n(n+1)}}\)

\(\Leftrightarrow \frac{1}{(n+1)\sqrt{n}}< 2.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Cho $n=1,2,....,2004$

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2(1-\frac{1}{\sqrt{2005}})< 2\) (đpcm)

20 tháng 10 2020

Tổng quát ta có: Với \(n\inℕ\)ta có:

\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n}+\sqrt{n+1}}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)

Với \(n=2\)\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\)

Với \(n=3\)\(\Rightarrow\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\)

...........................

Với \(n=79\)\(\Rightarrow\frac{1}{\sqrt{79}+\sqrt{80}}=\sqrt{80}-\sqrt{79}\)

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{80}-\sqrt{79}\)

\(=\sqrt{80}-\sqrt{2}=\sqrt{40.2}-\sqrt{2}=\sqrt{40}.\sqrt{2}-\sqrt{2}\)

\(=\sqrt{2}.\left(\sqrt{40}-1\right)>\sqrt{2}.\left(\sqrt{36}-1\right)\)

\(=\sqrt{2}.\left(6-1\right)=5\sqrt{2}>4\)( đpcm )

NV
19 tháng 9 2019

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(P=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2005\sqrt{2004}}\)

\(\Rightarrow P< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)

\(\Rightarrow P< 2\left(1-\frac{1}{\sqrt{2005}}\right)< 2.1=2\)